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The Japanese quail (

 

Coturnix coturnix japonica

 

) is
the first bird species whose lampbrush chromosomes
(LBCs) were investigated by modern methods of light
and electron microscopy [1–3]. These and later studies
of LBCs of the quail and other birds showed that LBCs
can be a model for investigation of chromosome organi-
zation by high-resolution FISH [4–7], physical mapping
of cloned sequences [8–13], investigation of transcrip-
tion during oogenesis [1, 5, 7–9, 14–16], investigation of
the frequency of meiotic genetic recombination (cross-
ing over) in birds, and determination of genetic linkage
between chromosomal markers and physically mapped
loci [13, 17–19]. Such studies require cytological map
of LBCs which would present loop and chromomere
patterns typical of each bivalent and an elaborated nota-
tion of chromosome markers. Use of such maps allows
rapid identification of bivalents in a cytological slide
and description of FISH signals and chiasmata (recip-
rocal genetic recombination sites) along a chromosome
[10, 12, 13, 18–21]. By now, the chicken is the only
higher vertebrate for which cytological LBC maps have
been constructed [20]. In the present work, we have
constructed maps of four lampbrush macroautosomes
and the sex bivalent of the Japanese quail and calcu-
lated the meiotic recombination frequency in Japanese
quail females.

MATERIALS AND METHODS

Lampbrush chromosomes of 

 

C. c. japonica

 

 were
isolated from oocytes by the microsurgical procedure
elaborated by Gaginskaya 

 

et al.

 

 [2] and Hutchison 

 

et al.

 

[21, 22]. Nuclei were isolated from oocytes of 0.5–2.5 mm
in diameter in a medium containing 83 mM KCl,
17 mM NaCl, 6.5 mM Na

 

2

 

HPO

 

4

 

, 3.5 mM KH

 

2

 

PO

 

4

 

,
pH 7.0–7.4; purified from cytoplasm; and placed into a
chamber for chromosome dispersion filled with the
medium for nucleus isolation diluted by a factor of 1.33
and supplemented with paraformaldehyde to the final
concentration of 0.1%. For convenience of in situ
hybridization of nucleic acids on LBCs, chromosomes
were isolated from nuclei in multiwell chambers (Fig. 1)
glued to an object slide with a paraffin-vaseline mixture
[23] or caoutchouc cement [10].
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Abstract

 

—Cytological map of lampbrush macrobivalents of the Japanese quail (

 

Coturnix coturnix japonica

 

)
were constructed. Investigation of chiasmata allowed to estimate the frequency of reciprocal genetic recombi-
nation (crossing over) in Japanese quail female meiosis. The total chiasma number in bivalents of Japanese
quail oocyte nuclei was determined to be 53–58. Macrobivalents 1–5 and Z of the Japanese quail had on average
3.3 chiasmata per bivalent, and microbivalents, 1.0–1.1 chiasmata per bivalent. The chiasmata (crossover) fre-
quency in Japanese quail females was lower than in chicken. In macrochromosomes of Japanese quail females,
one crossover occurred per 43.9 Mb, and in chicken, per 30.0 Mb. Judging from chiasma frequency, the genetic
length of the Japanese quail genome is likely to be 2650–2900 cM. Crossover frequency in the species was
0.023 per Mb in macrobivalents and 0.07–0.08 Mb in microbivalents and for the total genome, 0.041 crossing
over per Mb. The genetic length of one Mb (recombination rate 

 

θ

 

) in female Japanese quails was 1.14 cM in
macrochromosomes, 3.60–4.12 cM in microchromosomes, and about 1.96–2.15 cM averaged over the
genome.

 

Fig. 1. 

 

Multiwell chamber for isolation of avian lampbrush
chromosomes.
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Oocyte nuclei were disrupted with tungsten needles
onto the object slide and lampbrush chromosomes were
sedimented by 10–15 min centrifugation at 700–1000 g.
The slide was fixed with 2% glutaric aldehyde (Merck)
for 2–5 min, washed with alcohol solutions (70–96–96%)
and stained with Coomassie R250 (Merck) or fluores-
cent dye DAPI (Serva). Chromosome measures were
taken from 

 

×

 

1000 photo images using a curvimeter.
Lengths of double bridges (loops extended at the base)
were not taken into account when measuring the lengths
of bivalent axes and coordinates of marker structures.

RESULTS AND DISCUSSIONS

Lampbrush chromosomes isolated from Japanese
quail oocytes of 0.75–1.5 mm in diameter are shown in
Fig. 2. Bivalents differ in length, morphology, and dis-
tribution of lateral loops along chromosomes.

 

Bivalent 1.

 

 In the pattern of distribution of chromo-
some domains with different modal lengths of lateral
loops, bivalent 1 of the Japanese quail is very similar to
that of the chicken. The chiasma frequency in the biva-
lent is 6.3 

 

±

 

 0.94. We subdivided the bivalent into
12 domains (domains A–L, Figs. 2 and 3). Domain 1A
starts with a chromomere whose short loops are usually
coiled. This chromomere and the proximally adjoining
area is a crossover hot spot: bivalent 1 of the quail is

“locked” there with a terminal chiasma in 90% of sam-
ples. The terminal chromomere (1A1) is adjacent to 4–5
chromomeres with relatively long loops: 1AL2–
1AL5/1AL6. The next two chromomeres (1BL1 and
1BL2) with coiled loops form domain 1B. The next
domain, 1C, consists of 7–9 chromomeres, usually
adjacent, with loops of medium length. The distal
boundary of the domain is loop 1CL1. Domain 1D is a
cluster of 5–6 chromomeres with relatively long loops.
We designated the first of them as 1DL1. Domain E (the
conjectured location of the centromere) consists of
chromomeres intensely Coomassie-stained. Loops of
these chromomeres are notably shorter than in the
neighboring domains of chromosome 1 in the Japanese
quail. Domain 1F consists of two subdomains: 1F1 and
1F2. Subdomain 1F1 contains four chromomeres with
loops of medium length, and 1F2 contains four to five
chromomeres with long loops. Subdomain 1F2 is adja-
cent to a loopless cluster of chromomeres intensely
Coomassie-stained. The last of them sometimes bears a
small but intensely stained pair of loops (Domain 1G).
The next domain is 1H. Its five to seven chromomeres
have loops of medium length. Domain 1I consists of
seven to nine chromomeres with relatively long loops.
The distant part of this domain often contains an
intensely stained chromomere with coiled loops.
Domain 1J is a cluster of loopless chromomeres, most
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Fig. 2.

 

 Lampbrush chromosomes of the Japanese quail stained with Coomassie R-250. For marker description, see text.
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clearly observed in bivalents from large oocytes.
Domain 1K is a small cluster of looped chromomeres.
It is adjacent to subterminal domain 1L, whose proxi-
mal part lacks loops and several subterminal chro-
momeres have short lateral loops.

 

Bivalent 2.

 

 The pattern of lateral loops in bivalent 2
of the Japanese quail is diverse and shows distinct chro-
mosome domains. A characteristic marker of bivalent 2
of the quail is two long loops of domain D (2DL1 and
2DL3). Bivalent 2 on average contains 4.80 

 

±

 

 0.7 chi-
asmata. According to the centromere index, the cen-
tromere is supposed to occur in domain 2E. Long loop
2FL1 and small loop 2FL2 with dark matrix occur at
the boundary of the subcentromere region. Unlike biva-
lent 2 of the chicken, light microscopy does not reveal
the specific spherical protein body (spaghetti marker)
(see [6]) in the subtelomere region (2B) of the long arm
of bivalent 2 in the quail.

 

Bivalent 3

 

 of the Japanese quail is undoubtedly
homeologous to bivalent 3 of the chick [20]. It is subdi-
vided, in the same manner, into two parts: short-looped
(domains 3A–3C) and long-looped (3D). Bivalent 3 of
the chick contained on average 3.1 

 

±

 

 0.67 chiasmata.

 

Bivalent 4

 

 of the Japanese quail is subdivided into
four domains, of which 4A, 4B, and 4D have relatively
short loops, and 4C has long loops, the first of which
(4CL1) is distinguished by dark matrix. The bivalent
contains on average 2.8 

 

±

 

 0.38 chiasmata.

 

Sex bivalent ZW

 

 of the quail is readily identifiable.
If differs from that of the chicken by a longer W chro-
mosome. This bivalent was formerly described in detail

by Solovei 

 

et al.

 

 [21]. Loop WBL1 on chromosome W
is prominent in size.

The experimentally confirmed correspondence of
the number and locations of chiasmata to the number
and locations of reciprocal genetic exchange events
(crossovers) (see [24] for review) is the basic principle
of cytogenetic analysis of genetic recombination.
Application of this principle to data on chiasma loca-
tion on bivalents allows estimation of the frequency
reciprocal exchanges, investigation of genetic interfer-
ence, and construction of maps of genetic linkage of
chromosomal markers [17–19, 24–28]. To determine
crossover frequency in oogenesis in 

 

C. c. japonica

 

 and
calculate the crossover-based genetic length of the
quail macrochromosome linkage groups in quail mac-
rochromosomes, we calculated the chiasma frequencies
in each of lampbrush macrobivalents and on micro-
bivalents (Table 1). Note that microbivalents are poorly
preserved on slides. For this reason, exact calculation of
chiasmata in microbivalents is difficult. Those we iden-
tified contained one or two chiasmata, with one chi-
asma observed in the overwhelming majority of cases.
Comparison of the data on chiasma frequency in quail
oogenesis with the corresponding data formerly
obtained for the chicken [24] and turkey [29] shows that
crossover frequency in the quail is lower than in any of
the 

 

Galliformes 

 

investigated (Table 1).
General recombination characteristics of the

genomes of chicken, quails, and mammals can be esti-
mated from chiasma frequencies in meiosis (Table 2).
Generally, crossover frequency in meiosis in the quail
is lower than in the chicken. In the quail genome, one
crossover occurs per 23.3–25.4 Mb: in macrochromo-
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Fig. 3. 

 

Maps of macrobivalents of the Japanese quail.
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somes, per 43.9 Mb, and in microchromosomes, per
12.1–14.0 Mb. In the chicken genome, one crossover
occurs per 18.8–20.4 Mb: in macrochromosomes, per
30.0 Mb, and in microchromosomes, per 10.8–12.4 Mb.

In meiosis of human males, one crossover occurs
per 64.5 Mb [30]. Apparently, high crossover frequency
is a common feature of microchromosomes in all spe-
cies [31]. We know two factors which may determine
the high recombination rate in avian microchromo-
somes: GC abundance in microchromosomal euchro-
matin [32–34] and the presence of recombination hot
spots [18, 35].

To sum up, note that in previtellogenesis, LBCs are
approximately 30 times as long as the corresponding
chromosomes at the metaphase stage of mitosis [20],
whereas the number of structures recognized there
(loops and chromomeres), allowing FISH mapping of
genes and other sequences, exceeds the number of G
and RBA bands in so-called high-resolution differential
banding of prometaphase mitotic chromosomes [12,
13, 19, 34]. Thus, we can regard the maps of avian
LBCs constructed by us ([20] and the present commu-
nication]) as superhigh-resolution cytological (physi-
cal) maps of avian chromosomes.

 

Table 1.  

 

Chiasma frequency and linkage group lengths in females of three species of order Galliformes

Chromosome

Chiasma frequency 

 

x

 

 

 

±

 

 

 

s

 

x

 

Linkage group length, cM  

 

x

 

 

 

±

 

 

 

s

 

x

 

Coturnix c. 
japonica

Meleagris
gallopavo

 

*

 

Gallus g.
domesticus

Coturnix c. 
japonica

Meleagris
gallopavo

 

*

 

Gallus g.
domesticus

 

1 6.3 

 

±

 

 0.94 8.0 

 

±

 

 0.32 7.7 

 

±

 

 0.11 313 

 

±

 

 47.2 405 

 

±

 

 17.5 386 

 

±

 

 5.3

2 4.8 

 

±

 

 0.7 6.1 

 

±

 

 0.09 238 

 

±

 

 34.9 304 

 

±

 

 4.3

3 3.1 

 

±

 

 0.67 4.0 

 

±

 

 0.26 4.5 

 

±

 

 0.09 154 

 

±

 

 33.4 200 

 

±

 

 13.0 227 

 

±

 

 4.7

4 2.8 

 

±

 

 0.38 2.4 

 

±

 

 0.26 3.9 

 

±

 

 0.13 143 

 

±

 

 18.9 120 

 

±

 

 13.0 195 

 

±

 

 6.5

5 ~2 ~2 2.9 

 

±

 

 0.11 ~100 ~100 144 

 

±

 

 5.5

2q 3.0 

 

±

 

 0.26 150 

 

±

 

 13.0

ZW bivalent 1.0 

 

±

 

 0.0 1.0 

 

±

 

 0.0 1.0 

 

±

 

 0.0 50 50 50

Macro 1–5 19 19.5 25.1 948 975 1256

Micro 6–10 ~10 ~10 ~10 ~500 ~500 ~500

Total per oocyte 53–58 54–59 59–64 2650–2900 2700–2950 2950–3200

 

* After [29].

 

Table 2.  

 

Recombination frequencies in meiosis in the quail, chick, and man

 

Coturnix coturnix japonica

 

, females

 

Gallus gallus domesticus

 

, females

 

Homo sapiens

 

, 
males

macro micro total macro micro total total

Chromosome number (

 

n

 

) 5 + Z 33 + W 39 5 + Z 33 + W 39 22 + X(Y)

1C DNA amount (pg) 0.91 0.49 1.4* 0.81 0.44 1.25 3.5*

DNA amount, Mb 878.15 472.85 1351 784.06 422.19 1206.25 3377.5

DNA per chromosome, Mb 146.4 13.9 34.6 130.7 12.4 30.9 146.8

Chiasmata per nucleus 20.0 34–39 53–58 26.1 34–39 59–64 52.33**

Chiasmata per chromosome 3.3 1.0–1.1 1.6 4.35 1.0–1.1 1.6 2.3

Length of genetic maps, cM 1000 1700–1950 2650–2900 1305 1700–1950 2950–3200 2616.5

Crossover per 1 Mb 0.023 0.07–0.08 0.041 0.033 0.07–0.08 0.051 0.015

Genetic length (cM) of 1 Mb 1.14 3.60–4.12 1.96–2.15 1.66 4.03–4.62 2.44–2.65 0.77

 

* After [36]; **after [25, 30].
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