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Real turbomachines (A)

In real turbomachines the ow is 3-d : we could write it as in
cylindrical polar coordinates

v = vr r̂ + v��̂ + vz ẑ

where r̂ , �̂, ẑ are unit vectors in radial, tangential, axial
directions.

However we can make a simplifying assumption ; that v is a fn.
of r only. This is equivalent to assuming :

1 the blades are in�nitely thin { pressure di�erence across
blade produces torque

2 the ow is axisymmetric (number of blades !1)

3 no variation axially
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De�ne the following symbols :

v = absolute velocity
vw = tangential (whirl) velocity
vf = ow velocity
u = impeller velocity due to
! = angular rotation
vr = velocity relative to impeller

v r1 = v1 � u1

α
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`No shock' condition (A)

This is where when the uid enters and leaves at the angle the
blade is set, i.e. �0 = �

v f is normal to the control
surface, so relates to the ux
into the C.V.

vw is the whirl velocity at the
entry to the C.V.

vr1

u1 vw
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Momentum balance (A)

We know that applying conservation of linear momentum in
the integral formulation gives the force on a body. Similarly for
rotating ows

TCV =

ZZ
(�r � v)v :dA

is the net torque

We are interested in the torque in the z direction :

Tz =

ZZ
out

(�rvw )v :dA�

ZZ
in

(�rvw )v :dA

But ZZ
v :dA

so
Tz = (�rvwvf A)2 � (�rvwvf A)1
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However conserving mass gives the mean ow

_m = (�vf A)1 = (�vf A)2

So
Tz = _m [r2vw2 � r1vw1]

Power = Torque � Angular Velocity, so

P = _m! [r2vw2 � r1vw1]

Also u = r! for the impeller

P = _m [u2vw2 � u1vw1]
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As before we want to be able to express this in terms of the
head

Himp =
P

_mg
=

1

g
(u2vw2 � u1vw1)

{ Euler's equation

Express this using absolute velocities

vw1 = v1 cos�1

v2r1 = u21 + v21 � 2u1v1 cos�1

α1

vr1

u1 vw
1

v
1

α1
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Combining these gives

u1v1 cos�1 = u1vw1 =
1

2

�
u21 � v2r1 + v21

�

We can write similar expressions for location 2. Substituting
these

Himp =
v2
2
� v2

1

2g
+
u2
2
� u2

1

2g
+
v2r1 � v2r2

2g

v22�v21
2g

: increase in k.e. of the uid in the impeller

u22�u21
2g

: energy used putting uid into circular motion
about the impeller

v2
r1�v2

r2
2g

: static head gained due to reduction in relative
velocity as uid goes through impeller
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Centrifugal impeller (A)

Rotating with angular velocity !

) u1 = r1!

u2 = r2!

The mass ow _m for thin blades

_m = �12�r1b1vf 1 = �22�r2b2vf 2

If the ow is incompressible

r1b1vf 1 = r2b2vf 2

b
1

b2
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