Turbulence (A)

Description of turbulence (v2)

Effects of

Turbulence
 SOE3211/2 Fluid Mechanics lecture 5

Turbulence (A)

Turbulence is difficult to define precisely - easier to discuss its properties :

- state of fluid motion characterised by complex, chaotic motion
- quasi-random motions
- often described in terms of turbulent eddies of different scales in the flow
- vorticity represents strength of eddies

Where does it occur?

- Wall turbulence : walls (turbulent b.l.), pipes etc
- Free turbulence : wakes, jets

Individual eddies obey NS equations (one solution technique is to compute them - Direct Numerical Simulation, DNS).

Individual eddies interact + tend to break up.

Energy in turbulence
(1) starts off in large scale eddies
(2) is transmitted to smaller and smaller eddies
(3) until it ends up in the smallest possible eddies

The smallest eddies are those dominated by viscous effects : their energy is dissipated as heat.

This pattern is known as the turbulent cascade.

If we plot the energy
$\log E$
versus a characteristic length of the eddy

```
\(\log \lambda\)
```

we get an energy spectrum :

Note
(1) Kolmogorov length scale η where viscous effects dominate, i.e. $\mathcal{R} e_{\eta}=\frac{u^{\prime} \eta}{\nu} \sim 1$
(2) Slope of energy cascade is $-5 / 3$

Description of turbulence (v2) (A)

Question : how are we going to characterise such a complex flow?

Imagine measuring u_{x} in a laminar flow :

In a turbulent flow the graph would look like this:

Describe this as 'fluctuations' around an 'average' value

Turbulence

Description of turbulence (v2)

Effects of turbulence (A)

Define the time average of u_{x}

$$
\overline{u_{x}}=\frac{1}{\Delta t} \int_{t}^{t+\Delta t} u_{x}(t) d t
$$

Describe this as 'fluctuations' around an 'average' value

Define the time average of u_{x}

$$
\overline{u_{x}}=\frac{1}{\Delta t} \int_{t}^{t+\Delta t} u_{x}(t) d t
$$

How big is Δt ? Depends on the case :

- If the flow is quasi-steady, Δt can be as long as practical.
- If the flow varies with timescale $t_{v a r}$ (eg. a periodic flow) $\Delta t \ll t_{v a r}$

Non-steady flow :

However the time average only describes part of the flow. Introduce the fluctuation u_{x}^{\prime}

$$
u_{x}(t)=\overline{u_{x}}+u_{x}^{\prime}
$$

Non-steady flow :

Turbulence

However the time average only describes part of the flow. Introduce the fluctuation u_{x}^{\prime}

$$
u_{x}(t)=\overline{u_{x}}+u_{x}^{\prime}
$$

Fairly obviously, $\overline{u_{x}^{\prime}}=0$

Non-steady flow :

Turbulence

However the time average only describes part of the flow. Introduce the fluctuation u_{x}^{\prime}

$$
u_{x}(t)=\overline{u_{x}}+u_{x}^{\prime}
$$

Fairly obviously, $\overline{u_{x}^{\prime}}=0$
However

$$
\overline{u_{x}^{\prime 2}} \neq 0
$$

$\frac{1}{2} \overline{u_{x}^{\prime 2}}$ is one component of a kinetic energy

$$
k=\frac{1}{2}\left(\overline{{u_{x}^{\prime}}^{2}}+\overline{u_{y}^{\prime 2}}+\overline{u_{z}^{\prime 2}}\right)
$$

- the turbulent kinetic energy

If the turbulence is isotropic, then

$$
\overline{u_{x}^{\prime 2}}=\overline{u_{y}^{\prime 2}}=\overline{u_{z}^{\prime 2}}=\overline{u^{\prime 2}},
$$

and

$$
k=\frac{3}{2} \overline{u^{\prime 2}}
$$

We can also consider the rate of dissipation of turbulent kinetic energy. This is usually denoted ϵ.

Effects of turbulence (A)

2 main effects here :
(1) Dissipation of flow energy - the turbulent motion contains kinetic energy unrelated to the mean motion of the fluid
(2) Diffusive effects

Consider a particle in the flow. This particle will be swept along by successive eddies, and thus be transported from its starting point.

Neighbouring particles may see different eddies, and end up a long way apart.

Similar to the 'random walk' molecular process for real diffusion in gases

- thus turbulence produces a diffusive effect.

Turbulent Boundary Layers (A)

We note the following
(1) There has to be a laminar region close to the wall

- wall layer/viscous sublayer
- $\tau_{\text {visc }} \gg \tau_{\text {turb }}$
(2) Far from the wall there will be a turbulent region where \bar{u} regains the free stream velocity
- free turbulent/log-law region
- $\tau_{\text {visc }} \ll \tau_{\text {turb }}$
(3) In between: an intermediate region
- wall turbulent/transition region
- $\tau_{\text {visc }} \sim \tau_{\text {turb }}$

Often write the group

$$
\frac{y u_{\tau}}{\nu}=y^{+}, \quad u_{\tau}=\sqrt{\frac{\tau_{0}}{\rho}}
$$

and refer to distances measured in wall units

- Viscous sublayer $0<y^{+}<5$
- Transition $5<y^{+}<30$
- Free turbulent $y^{+}>30$

The boundary layer may start laminar + become turbulent

Transition will depend on $\mathcal{R} e_{x}$, as defined before :

$$
\mathcal{R} e_{x}=\frac{U_{\infty} x}{\nu}
$$

- Above $\mathcal{R e} e_{x} \sim 5 \times 10^{5}$ the b.l. is turbulent.
- Below $\mathcal{R} e_{x} \sim 10^{5}$ it is laminar
- Transitional for intermediate values
- Turbulence can be triggered early by rough surfaces
- Or can remain laminar if the surface is very smooth

