Background (A) Efficiency (A)

Design issues (A)

Wind resource modelling (A)

Wind statistics (B)

Blade aerodynamics (B)

Wind turbines SOE3211/2 Fluid Mechanics lecture 10

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Background (A)

Background (A)

Efficiency (A)

Design issue: (A)

Wind resource modelling (A)

Wind statistics (B)

Blade aerodynamics (B) Much interest in wind power for electricity generation – currently only really competative renewable energy source. UK has significant wind 'reserves'.

Several designs investigated over last 20 years – however industry has opted for single design : Horizontal Axis Wind Turbine (HAWT). Features :

- 2-3 airfoil blades (composite construction)
- Blades connected to hub : axis of rotation horizontal
- Hub/shaft/generation gear placed on top of support tower

Energy generation - implies momentum extracted from airflow

speed downstream < speed upstream

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- streamlines expand through rotor disk.

Analyse this through Bernoulli.

Background (A)

Efficiency (A)

Design issues (A)

Wind resourc modelling (A

Wind statistic (B)

Blade aerodynamics (B)

Efficiency (A)

Assume that $u_2 = u_3$, so

$$p_2 - p_3 = \frac{1}{2}\rho(u_1^2 - u_2^2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Efficiency (A)

Thrust on the turbine

$$F =
ho Q(u_1 - u_4) = A(p_2 - p_3)$$

Combining these we find

$$u_2 = u_3 = \frac{1}{2}(u_1 + u_4)$$

Efficiency of turbine

 $\eta = \frac{\text{loss of k.e. from airstream}}{\text{undisturbed power through rotor disk area}}$ $= \frac{\frac{1}{2}\rho A u_2 (u_1^2 - u_4^2)}{\frac{1}{2}\rho A u_1 u_1^2}$ $= \frac{(u_1 + u_4)(u_1^2 - u_4^2)}{2u_1^3}$ $= \frac{1}{2}(1 + u_r - u_r^2 - u_r^3)$

with $u_F = u_4 / u_{1_{\circ}, \circ}$

Wind statist (B) Blade

Maximum efficiency - look for turning point

Background (A)

Efficiency (A)

Design issue (A)

Wind resource modelling (A)

Wind statistic (B)

Blade aerodynamics (B)

$\frac{d\eta}{du_r} = \frac{1}{2}(1 - 2u_r - 3u_r^2) = 0$ $\Rightarrow u_r = \frac{1}{3}$

for which

$$\eta = \frac{16}{27} = 59.3\%$$

- the Betz limit

Interpretation :

- Maximum energy extraction when $u_4 = 0$ no flow through turbine, zero power
- If $u_4 = u_1$, flow rate maximised, but no energy extracted
- Betz represents optimum energy extraction.

Background (A)

Efficiency (A

Design issues (A)

Wind resource modelling (A)

Wind statistics (B)

Blade aerodynamics (B)

Design issues (A)

Various (fluids-related) design issues of importance, including
 Vibration – air turbulence, vortex shedding, (blade rotation) all generate vibrations at specific frequencies.
 This can cause fatigue. Solution : design the installation so that its resonant frequencies ≠ any likely driving frequencies.

Noise – quite a significant NIMBY issue. Design turbines to reduce aerodynamic noise, model sound propagation to investigate environmental impact.

System control. Need turbine to point into wind, run at constant speed : also cut out if wind speed too high.

Background

Design issues

(A)

- also to reduce efficiency in high winds.

Also : control pitch of blades themselves to change aerodynamic forces or stall the blades when necessary.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Background (A) Efficiency (A) Design issues

Wind resource modelling (A)

Wind statistics (B)

Blade aerodynamics (B)

Wind resource modelling (A)

Detailed modelling of aerodynamics of blades etc - use CFD.

However – also interested in the longer-term average winds – prevailing wind direction, strength etc – particularly when considering wind farm siting.

Atmospheric Boundary Layer (ABL) :

- At heights $> 1 \mathrm{km}$, wind hardly affected by presence of ground
- At ground level, u = 0 thus there must be a boundary layer
- Wind speeds in ABL taken to be logarithmic

$$u(z) = \frac{u^*}{k} \log\left(\frac{z}{z_0}\right)$$

with z_0 as roughness parameter – varies from O(mm) for smooth terrain (ice, water) to o(m) (urban areas).

(A) Efficiency (A) Design issues (A)

Wind resource modelling (A)

Wind statistics (B)

Blade aerodynamics (B) • Sometimes easier to use power law profile

$$\frac{u(z)}{u(z_r)} = \left(\frac{z}{z_r}\right)^{\alpha}$$

Non-flat terrain – mesoscale modelling (atmospheric processes on spatial scales 1 - 1000 km) – typically use combination of ABL, simple modifications for terrain features, and wind atlas.

Examples – WAsP, MS3DHJ – extensively used in siting wind farms.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Background Efficiency (A) Design issues Wind resource

modelling (A)

aerodynamics

Larger scale – wind resource information

Background (A)

Efficiency (A)

Design issues (A)

Wind resource modelling (A)

Wind statistics (B)

Blade aerodynamics (B)

Wind statistics (B)

Wind is intermittent and fluctuating. Characterise fluctuation in terms of a *probability density function* (pdf) :

Definition

The pdf p(u) is the probability that the wind speed lies between u and u + du.

Using this, the probability that the wind speed is between U_a and U_b is given by

$$p(U_a \leq u \leq U_b) = \int_{U_a}^{U_b} p(u) du$$

Of course

$$\int_0^\infty p(u)du = 1$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

(A) Efficiency (A

(A)

Wind resource modelling (A)

Wind statistics (B)

Blade aerodynamics (B) Average wind power generated can be calculated if the machine power curve $P_w(u)$ is known :

$$\overline{P_w} = \int_0^\infty P_w(u) p(u) du$$

The actual shape of the pdf for wind is quite complex – often characterised by *Rayleigh* or *Weibull* distributions. Curves are not symmetrical :

3

Background (A) Efficiency (A) Design issues (A) Wind resource

modelling (A)

Wind statistics (B)

Blade aerodynamics (B) Mean wind speed can be evaluated :

$$\overline{u} = \int_0^\infty up(u) du$$

not necessarily the same as the modal wind speed (most frequent wind speed).

Fluctuations around this – turbulence intensity – also important parameter.

Available wind power dependant on u^3 . Often use *root mean cube* wind speed as index of 'average' wind speed :

$$u_{rmc} = \sqrt[3]{\overline{u^3}}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

(A)
 Efficiency (A)
 Design issues
 (A)

Wind resource modelling (A)

Wind statistics (B)

Blade aerodynamics (B)

Blade aerodynamics (B)

Individual blades are airfoils with carefully-chosen profiles. Lift (and drag!) forces on the blades create a torque which drives the turbine.

Blades can turn faster than wind speed (this makes the system more efficient). Speed ratios up to 10 can be used. Force on blade $\propto u_{rel}^2$, where u_{rel} is the relative speed of the blade to the air – a combination of rotation and wind speed.

 u_{rel} increases with distance from the hub (since $u_b = \Omega r$). Thus, to calculate the torque, consider small *blade element* and integrate.

Background (A) Efficiency (A Design issue

Wind resource modelling (A)

Wind statistics (B)

Blade aerodynamics (B)

Determine lift force for small element

$$dF = \frac{1}{2}C_L u_{rel}^2 b \ dr$$

and torque

$$dG = \frac{1}{2}C_L u_{rel}^2 rb \ dr$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

and integrate. Note that C_L may vary with r if necessary.