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Background (A)

Much interest in wind power for electricity generation {
currently only really competative renewable energy source. UK
has signi�cant wind 'reserves'.

Several designs investigated over last 20 years { however
industry has opted for single design : Horizontal Axis Wind
Turbine (HAWT). Features :

� 2-3 airfoil blades (composite construction)

� Blades connected to hub : axis of rotation horizontal

� Hub/shaft/generation gear placed on top of support tower
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Airfoil
blades

Hub with gearbox,
control systems, generator

Support tower

Energy generation { implies momentum extracted from air
ow

speed downstream < speed upstream

{ streamlines expand through rotor disk.

Analyse this through Bernoulli.



Wind turbines

Background
(A)

E�ciency (A)

Design issues
(A)

Wind resource
modelling (A)

Wind statistics
(B)

Blade
aerodynamics
(B)

E�ciency (A)

Edge of slipstream
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Applying Bernoulli 1! 2
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Applying Bernoulli 3! 4
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Assume that u2 = u3, so

p2 � p3 =
1

2
�(u21 � u22)
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Thrust on the turbine

F = �Q(u1 � u4) = A(p2 � p3)

Combining these we �nd

u2 = u3 =
1

2
(u1 + u4)

E�ciency of turbine

� =
loss of k.e. from airstream

undisturbed power through rotor disk area
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with ur = u4=u1
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Maximum e�ciency { look for turning point

d�

dur
=

1

2
(1� 2ur � 3u2r ) = 0

) ur =
1

3

for which

� =
16

27
= 59:3%

{ the Betz limit

Interpretation :

� Maximum energy extraction when u4 = 0 { no 
ow
through turbine, zero power

� If u4 = u1, 
ow rate maximised, but no energy extracted

� Betz represents optimum energy extraction.
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Design issues (A)

Various (
uids-related) design issues of importance, including

Vibration { air turbulence, vortex shedding, (blade rotation)
all generate vibrations at speci�c frequencies.
This can cause fatigue. Solution : design the
installation so that its resonant frequencies 6= any
likely driving frequencies.

Noise { quite a signi�cant NIMBY issue. Design
turbines to reduce aerodynamic noise, model
sound propagation to investigate environmental
impact.

System control. Need turbine to point into wind, run at
constant speed : also cut out if wind speed too
high.
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Yaw, pitch { rotation of assembly to point into prevailing wind

Pitch

Yaw

{ also to reduce e�ciency in high winds.

Also : control pitch of blades themselves to change
aerodynamic forces or stall the blades when necessary.
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Wind resource modelling (A)
Detailed modelling of aerodynamics of blades etc { use CFD.

However { also interested in the longer-term average winds {
prevailing wind direction, strength etc { particularly when
considering wind farm siting.

Atmospheric Boundary Layer (ABL) :

� At heights > 1 km, wind hardly a�ected by presence of
ground

� At ground level, u = 0 { thus there must be a boundary
layer

� Wind speeds in ABL taken to be logarithmic

u(z) =
u�

k
log

�
z

z0

�

with z0 as roughness parameter { varies from O(mm) for
smooth terrain (ice, water) to o(m) (urban areas).



Wind turbines

Background
(A)

E�ciency (A)

Design issues
(A)

Wind resource
modelling (A)

Wind statistics
(B)

Blade
aerodynamics
(B)

� Sometimes easier to use power law pro�le

u(z)

u(zr )
=

�
z

zr

�
�

Non-
at terrain { mesoscale modelling (atmospheric processes
on spatial scales 1� 1000 km) { typically use combination of
ABL, simple modi�cations for terrain features, and wind atlas.

Examples { WAsP, MS3DHJ { extensively used in siting wind
farms.
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Larger scale { wind resource information
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Wind statistics (B)

Wind is intermittent and 
uctuating. Characterise 
uctuation
in terms of a probability density function (pdf) :

De�nition

The pdf p(u) is the probability that the wind speed lies
between u and u + du.

Using this, the probability that the wind speed is between Ua

and Ub is given by

p(Ua � u � Ub) =

Z
Ub

Ua

p(u)du

Of course Z
1

0

p(u)du = 1
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Average wind power generated can be calculated if the machine
power curve Pw (u) is known :

Pw =

Z
1

0

Pw (u)p(u)du

The actual shape of the pdf for wind is quite complex { often
characterised by Rayleigh or Weibull distributions. Curves are
not symmetrical :

p(u)

u
Mean wind speed

Modal wind speed
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Mean wind speed can be evaluated :

u =

Z
1

0

up(u)du

not necessarily the same as the modal wind speed (most
frequent wind speed).

Fluctuations around this { turbulence intensity { also important
parameter.

Available wind power dependant on u3. Often use root mean
cube wind speed as index of 'average' wind speed :

urmc =
3
p
u3
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Blade aerodynamics (B)

Individual blades are airfoils with carefully-chosen pro�les. Lift
(and drag!) forces on the blades create a torque which drives
the turbine.

Blades can turn faster than wind speed (this makes the system
more e�cient). Speed ratios up to 10 can be used. Force on
blade / u2

rel
, where urel is the relative speed of the blade to the

air { a combination of rotation and wind speed.

urel increases with distance from the hub (since ub = 
r).
Thus, to calculate the torque, consider small blade element and
integrate.
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R

r
dr

Ub

Determine lift force for small element

dF =
1

2
CLu

2

relb dr

and torque

dG =
1

2
CLu

2

rel rb dr

and integrate. Note that CL may vary with r if necessary.
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