Turbomachinery - 2

SOE3211/2 Fluid Mechanics lecture 9

9.1 Real turbomachines (A)

In real turbomachines the flow is 3-d : we could write it as in cylindrical polar coordinates

$$
\underline{v}=v_{r} \underline{\hat{r}}+v_{\theta} \underline{\hat{\theta}}+v_{z} \underline{\hat{z}}
$$

where $\underline{\hat{r}}, \underline{\hat{\theta}}, \underline{\hat{z}}$ are unit vectors in radial, tangential, axial directions.
However we can make a simplifying assumption ; that \underline{v} is a fn. of r only. This is equivalent to assuming :

1. the blades are infinitely thin - pressure difference across blade produces torque
2. the flow is axisymmetric (number of blades $\rightarrow \infty$)
3. no variation axially

Define the following symbols :

$$
\begin{aligned}
v & =\text { absolute velocity } \\
v_{w} & =\text { tangential (whirl) velocity } \\
v_{f} & =\text { flow velocity } \\
u & =\text { impeller velocity due to } \\
\omega & =\text { angular rotation } \\
v_{r} & =\text { velocity relative to impeller }
\end{aligned}
$$

$$
\underline{v}_{r 1}=\underline{v}_{1}-\underline{u}_{1}
$$

9.2 'No shock' condition (A)

This is where when the fluid enters and leaves at the angle the blade is set, i.e. $\beta^{\prime}=\beta$
\underline{v}_{f} is normal to the control surface, so relates to the flux into the C.V.
\underline{v}_{w} is the whirl velocity at the entry to the C.V.

9.3 Momentum balance (A)

We know that applying conservation of linear momentum in the integral formulation gives the force on a body. Similarly for rotating flows

$$
\underline{T}_{C V}=\iint(\rho \underline{r} \times \underline{v}) \underline{v} \cdot d \underline{d}
$$

is the net torque
We are interested in the torque in the z direction :

$$
T_{z}=\iint_{o u t}\left(\rho r v_{w}\right) \underline{v} \cdot d \underline{A}-\iint_{i n}\left(\rho r v_{w}\right) \underline{v} \cdot d \underline{A}
$$

But

$$
\iint \underline{v} \cdot d \underline{A}
$$

so

$$
T_{z}=\left(\rho r v_{w} v_{f} A\right)_{2}-\left(\rho r v_{w} v_{f} A\right)_{1}
$$

However conserving mass gives the mean flow

$$
\dot{m}=\left(\rho v_{f} A\right)_{1}=\left(\rho v_{f} A\right)_{2}
$$

So

$$
T_{z}=\dot{m}\left[r_{2} v_{w 2}-r_{1} v_{w 1}\right]
$$

Power $=$ Torque \times Angular Velocity, so

$$
P=\dot{m} \omega\left[r_{2} v_{w 2}-r_{1} v_{w 1}\right]
$$

Also $u=r \omega$ for the impeller

$$
P=\dot{m}\left[u_{2} v_{w 2}-u_{1} v_{w 1}\right]
$$

As before we want to be able to express this in terms of the head

$$
H_{i m p}=\frac{P}{\dot{m} g}=\frac{1}{g}\left(u_{2} v_{w 2}-u_{1} v_{w 1}\right)
$$

- Euler's equation

Express this using absolute velocities

$$
v_{w 1}=v_{1} \cos \alpha_{1}
$$

$$
v_{r 1}^{2}=u_{1}^{2}+v_{1}^{2}-2 u_{1} v_{1} \cos \alpha_{1}
$$

Combining these gives

$$
u_{1} v_{1} \cos \alpha_{1}=u_{1} v_{w 1}=\frac{1}{2}\left(u_{1}^{2}-v_{r 1}^{2}+v_{1}^{2}\right)
$$

We can write similar expressions for location 2 . Substituting these

$$
H_{i m p}=\frac{v_{2}^{2}-v_{1}^{2}}{2 g}+\frac{u_{2}^{2}-u_{1}^{2}}{2 g}+\frac{v_{r 1}^{2}-v_{r 2}^{2}}{2 g}
$$

$\frac{v_{2}^{2}-v_{1}^{2}}{2 g}$: increase in k.e. of the fluid in the impeller
$\frac{u_{2}^{2}-u_{1}^{2}}{2 g}$: energy used putting fluid into circular motion about the impeller
$\frac{v_{r 1}^{2}-v_{r 2}^{2}}{2 g}$: static head gained due to reduction in relative velocity as fluid goes through impeller

9.4 Centrifugal impeller (A)

Rotating with angular velocity ω

$$
\begin{aligned}
\Rightarrow \quad u_{1} & =r_{1} \omega \\
u_{2} & =r_{2} \omega
\end{aligned}
$$

The mass flow \dot{m} for thin blades

$$
\dot{m}=\rho_{1} 2 \pi r_{1} b_{1} v_{f 1}=\rho_{2} 2 \pi r_{2} b_{2} v_{f 2}
$$

If the flow is incompressible

$$
r_{1} b_{1} v_{f 1}=r_{2} b_{2} v_{f 2}
$$

