
Laminar Boundary Layers

SOE3211/2 Fluid Mechanics lecture 4

4.1 Boundary Layer (A)

Boundary conditions for ow at a wall

urel = 0

{ the ow shares the velocity of the wall.

For a stationary wall, u = 0

Thus, no matter what the ow is doing anywhere else, there must be a
laminar region somewhere close to the wall.

The near wall region where the ow adapts to urel = 0 is called the
�

�

�

�
Boundary Layer

(Almost) everything of importance happens in the boundary layer { impor-
tant e�ects on

� lift

� drag

� heat transfer

) going to spend quite some time on it.

In particular, want to determine wall shear stress.

�0 =
F0
A

Relate to friction coe�cient
Cf =

�0
1

2
�U2

4.2 Laminar Boundary Layer (A)

Laminar ow around a at plate. Fluid ows past the plate with velocity U1
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E�ect of the plate propagates outwards

) broadening `region of inuence' around the plate.
We can de�ne a distance � { the boundary layer thickness { which is the

distance at which the ow velocity begins to drop

De�ne � as the distance that

ux(�) = 99%U1

(the factor 99% is somewhat arbitary).

Flow is largely parallel to the plate except in `adjustment region' around �

Other de�nitions of � possible

4.3 Skin Friction Coe�cient Cf (A)

De�ne coe�cient
Cf =

�0
1

2
�U2

1

where �0 is the surface stress (force per unit area of the surface).

Useful : if we have Cf , can �nd force on the plate.

Blasius solution to NSE for laminar b.l. ow across plate gives �0, so

Cf =
0:664pRex

with

Rex =
U0x

�
and x is distance along plate. This is a local coe�cient.

We want to be able to �nd the drag on a complete plate. Integrate along x,
plate length L we get

Cf =
1:33pReL

with ReL =
U0L

�

Also : thickness of b.l.
�

x
=

4:64pRex
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4.4 von Karman analysis (B)

A D

C

B

∆x

Apply momentum equation !

��0�x =

Z �2

0

�u2
2
dy �

Z �1

0

�u2
1
dy � �U2

0
(�2 � �1)

In order :

��0�x shear force opposing motionR �2
0

�u2
2
dy rate of momentum transfer through CD

� R �1
0

�u2
1
dy same through AB

��U2

0
(�2 � �1) momentum through BC

But

U0(�2 � �1) =

Z �2

0

u2dy �
Z �1

0

u1dy

Rearanging we �nd

��0�x = �U2

0

"Z �2

0

 �
u2
U0

�2
� u2

U0

!
dy

�
Z �1

0

 �
u1
U0

�2
� u1

U0

!
dy

#

Limit as �x! 0 :

�0 = �U2

0

d

dx

Z �

0

 �
u

U0

�2
� u

U0

!
dy
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or

�0 = �U2

0

d�

dx

where

� =

Z 1

0

�
1� ux

U0

�
ux
U0

dy

Importance of this? If we know � or u (measurements, theory), can calculate
forces.

4.5 Blasius Solution (B)

Mathematical solution for laminar boundary layer. (details { Assessment sheet
B1)

L
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Assumptions

1. steady ow { @
@t

= 0

2. ow is largely parallel to the plate {

neglect uy;
@

@x
� @

@y
;

@2

@x2
� @2

@y2

3. pressure terms @p
@x

= 0, @p
@y

= 0

Using this, it is possible to show that the Navier-Stokes equations become

ux
@ux
@x

+ uy
@ux
@y

= �
@2ux
@y2

@ux
@x

+
@uy
@y

= 0

[NB. The assumption that @p
@x

= 0 is an assumption. Curved surfaces { later
in the course { do not have this restriction.]
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To solve these, we combine the two equations. It turns out best to write ux
and uy in terms of a stream function

ux =
@	

@y
uy = �

@	

@x

In turn, the stream function

	 =
p
�xU1f(�)

where
� =

yp
�x=U1

In terms of f the governing equations can be written

f
d2f

d�2
+ 2

d3f

d�3
= 0

{ a 3rd order ODE. Solve using Runge-Kutta function rkfixed in MathCad.

We can use Blasius solution to determine ow conditions in boundary layer :

Determine � ! �nd f; f 0 ! work back to u.
Note

ux
U1

= f 0(�);
uy
U1

=
1

2

r
�

U1x
(�f 0 � f)

Remember
Cf =

�0
1

2
�U2

1

where �0 is the surface stress

�0 = �

�
@ux
@y

�
y=0

We can evaluate
�
@ux
@y

�
y=0

from Blasius,

Cf =
2pRex

�
d2f

d�2

�
�=0

Since f 00 = 0:332, this gives

Cf =
0:664pRex
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4.6 Summary (A)

� Fluid ow governed by cons. of mass, momentum.

� Draw control volume around problem + balance inputs, outputs

{ Integral formulation

{ May need to consider small elemental areas dA = ydx, dA = 2�rdr
(polar coordinates)

{ Leads to

{ von Karman method

� Di�erential formulation { Navier-Stokes Equations

{ Solve via computer

{ or simplify to give ODE + boundary conditions

� Required to have uk = 0 next to wall { implies boundary layer where ow
adjusts

� Simplest form : laminar boundary layer

� Given ow pro�le in some form, can work out drag on wall

� Usually express drag as drag coe�cient

Cf =
F=A
1

2
�U2

1

{ Cf = Cf (Rex)
{ Also de�ne Cf = Cf (ReL)
{ Various empirical and mathematical (Blasius soln) relations available
for Cf , Cf .
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