
NSE { Integral form

SOE3211/2 Fluid Mechanics lecture 2

2.1 Recap

Fluid ows governed by conservation of mass, momentum. We can use this to
solve ow problems.

Draw box (control volume) around region of interest, then equate mass ux
into, out of region.

{ Integral formulation of NSE

2.2 Momentum equation (A)

We can also write the conservation of momentum in a similar form.

The momentum of a small piece of uid will be �udV . So the rate of change
is

d

dt

ZZZ
V

�udV

What is the ux of momentum? In fact it is (�u)u:dA through a bit of area
dA.

Thus we can write

d

dt

ZZZ
V

�udV +

ZZ
S

(�u)u:dA =
X

Forces

The forces are

1. body forces, eg. gravity, and

2. surface forces { pressure, viscous stress, etc.

2. can be written as a stress � , and so

d

dt

ZZZ
V

�udV +

ZZ
S

(�u)u:dA =

ZZ
S

� :dA
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Can we make use of this? If we assume that the ow is steady, i.e.

d

dt

ZZZ
V

�udV = 0

and choose our control volume V intelligently, then we can use this to calculate
the forces on a body.

2.3 B.L. ow (again) (B)

L

A

B C

D

Uo ux

x

yδ

Assume ux = U0 sin
�y

2�
across CD

What happens if we consider momentum uxes?

In the x direction : Momentum ux AB

FAB = (�U0)� U0 � (� � d) = �U2
0 �d

Momentum ux CD : For a small element �y the momentum ux is

(�ux)ux(d� �y)

so integrating this

FCD = d�

Z �

0

�u2xdy

= �d

Z �

0

U2
0 sin

2 �y

2�
dy

= �U2
0

Z �

0

1

2

�
1� cos

�y

�

�
dy

=
�U2

0 d

2

�
y �

�

�
sin

�y

�

��
0

=
�U2

0 �d

2

Momentum ux BC : We can guess that the uid owing out of BC shares
the undisturbed ow velocity in the x direction. Hence

FBC = (mass ux)BC � U0 = �U2
0 �d

�
1�

2

�

�
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Thus
(Net momentum ux)x = Fin �Fout

= FAB �FCD �FBC

= �U2
0 �d

�
1�

1

2
�

�
1�

2

�

��

= �U2
0 �d

�
2

�
�

1

2

�

The only surface left is AD. There is no uid owing across this surface, so
this must represent the force exerted on the plate AD by the uid ow.

NB. We have implicitly assumed there are no viscous stresses of importance
on AB, BC, CD.

2.4 Worked example (B)

Tests of a model underwater projectile in a water tunnel show that the velocity pro�le

in a certain cross-section of the wake may be approximated to the shape of a cone.

At this section the centreline velocity is equal to half the free stream velocity and the

width of the wake is equal to twice the missile diameter. Use the von Karman integral

analysis to estimate the drag coe�cient of the torpedo.

Uoo

d 2d

The wake velocity is
u

u1
=

1

2

�
1 +

r

d

�

We work in cylindrical polar coordinates, so over the ends dA = 2�rdr.

Consider mass uxes �rst :

�
(�)
A = �

(�)
B + �

(�)
C

i.e.

Z d

0

�U12�rdr = MBC +

Z d

0

�u2�rdr
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Rearanging,

�
(�)
B =

Z d

0

�(U1 � u)2�rdr

Momentum balance over control volume :

Force = FA �FB �FC

=

Z d

0

�U2
1
2�rdr � U1MB �

Z d

0

�u22�rdr

Substituting for �
(�)
B and rearanging, we get

FD =

Z d

0

�u (U1 � u) 2�rdr

Now substituting for u we have

FD =
��U2

1

2

Z d

0

�
1�

� r
d

�2�
rdr

=
��U2

1

2

�
r2

2
�

r4

4d2

�d
0

=
��U2

1

2

�
d2

4

�

Finally, the drag coe�cient is

Cd =
FD

1
2�U

2
1
AM

where AM is the frontal area of the projectile = �d2=4.

So in this case Cd = 1

This is often known as the von Karman integral formulation

2.5 von Karman integral formulation (A)

� Measure wake velocities

� Draw apprpriate control volume

� Apply integral forms of mass, momentum equations

� Ignore viscous stresses

Mathematics equivalent to integrating momentum de�cit over area of wake.
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In cylindrical coordinates

Fz =

Z
�uz (U1 � uz) 2�rdr

In cartesian coordinates

Fx =

Z
�ux (U1 � ux) dy

2.6 Other uxes (B)

So far we have de�ned a volume ux

�V = u:dA

and a mass ux
�� = �u:dA

and a momentum ux
�m = (�u) u:dA

De�ne uxes for any quantity of interest :

Kinetic energy �ke =

�
1

2
�u2

�
u:dA

Angular mom. �am = (�r � u)u:dA
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