Solutions (2002)

Question 1. a. Equating the two expressions for 7 gives a first order ode :

du(r) r dp
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Integrating this, and imposing the boundary condition that the velocity u(r) must be zero
at the wall (r = R) gives the required profile

u(r) = —%i (R2 — 7“2) (1)

b. To get @ we need to integrate u(r) over the end of the pipe. Thus :
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c. Dividing this last expression by mR? gives

9, _or
TR2  dz8pu
Dividing (1) by this
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Rearanging this gives the expression in the question.

2 _ .2
u(r) = QER R2r

d. The laminar flow is smooth : neighbouring streamlines remain close, and the
profile is parabolic. At Re = 8000 the flow will have become turbulent. Turbulent flows
are characterised by a chaotic component of the flow superimposed on whatever mean flow
is present. Neighbouring streamlines diverge rapidly. The mean flow profile will become
flatter at the centre of the pipe and steeper at the edges, characterised by a 1/7 power
law.



Question 2. Solution.
a. Standard energy spectrum diagram

b. Flow behind a cylinder demonstrates different characteristics at different Reynolds
numbers as it transitions from smooth, laminar flow at Re < 1 to a turbulent wake for
high Reynolds numbers. At Re ~ 100 the flow pattern takes the form of two stable
recirculation zones behind the cylinder. As the Reynolds number is increased from this
these zones become unstable, and eventually are shed alternating from either side, to be
advected downstream by the mean flow. This row of alternating vortices is called the von
Karman vortex street. A sketch may be included in this explanation.

The frequency of shedding is characterised by a dimensionless group called the Strouhal
number.

c. The sphere will reach terminal velocity where the forces, including hydrodynamic
forces, are in equilibrium. The three forces involved are i. the weight of the sphere, ii.
the fluid upthrust and iii. the hydrodynamic drag. Balancing these gives

W-—-U=D

where

4
W = §7rr3psteel is the weight of the ball
U= §7r7°3pwam is the upthrust

1
D = 3 PwaterV2Cp(Re)A is the drag force (A = area of sphere)

Since D = D(V'), the velocity, (non-linearly through the drag coefficient), we will need to
guess the velocity and iterate to find a solution.

4 1
W-U= §71'7‘3 (psteel - pwater) = 5)Owa.terVQC'DTM,2

Rearanging this and substituting values 18.187 = V2Cp Also Re = %i = 3922V For each
case, we substitute the value of r, then guess a starting velocity, find Re, Cp (read from
the graph) and V2, then iterate this until V no longer changes.

d. Golf balls travel in a regime close to the ‘drag crisis’, where the boundary layer can
become turbulent, and the drag coefficient and hence drag force can drop dramatically.
The dimples help to force the boundary layer into turbulence.

Question 3. Solution

a.i. No shock condition implies the fluid meets or leaves the impeller blades tangen-
tially, ie g’ = 5.

ii. Hydraulic losses are the fluid flow losses (as against frictional losses in bearings

etc) — basically the sum of impeller loss (shocks) leakage loss (fluid missing the impeller)
and casing loss (fluid drag against the casing).



b. At the inlet :

Inlet area A; = 7dihy =7 x 0.4 x 0.1 = 0.126 m?
A% = 6.366 m/s
Whirl velocity v,; = 1.45 m/s
Rotational speed N = 200RPM =3.33rps = w = 20.94 rad/s

Rotational velocity u; = rw = 4.189 m/s

Inlet flow through impeller vy, =

From this information we can sketch the inlet triangle :

s 1.45m/s
1

From this the absolute and relative velocities can be evaulated straightforwardly, as can
Q.

c. The angle 8 on the figure above can be evaluated thus :

U arctan 6737 = 66.7°

— arctan — 2L
p = arctan — — 419 — 1.45

For the no-shock condition the water should meet the blade tangentially. To achieve this
the blade should be set at this angle of 66.7°.

d. At the outlet, the area is now 0.314 m?, so vy, = 2.546 m/s. The rotational velocity
us = 10.47 m/s. We can draw the outlet triangle thus :



40/

Uz 10.47m/s

and so the whirl velocity at the outlet is v, = ug — A = 7.49 m/s Thus
vy = /U2 + vys = V2.52 +7.492 =79 m/s

e. The Euler equation is

P 1
Himp = m—g = ; (UQUwQ - U1Uw1)
Evaluating this
1
Hipmp = o8l (10.47 x 7.49 — 4.19 x 1.45) = 7.37 metres of water

Question 4. Solution.

a. The curve is actually a straight line giving a lift coefficient of 0.6 for « = 0 and 1.3
for a = 5°. This is not uncommon (small angle approximation). Beyond « = 5° the curve
may stop being linear, and will definitely reach a maximum and drop off. The maximum
is the stall angle, and is caused by vortex shedding from the leading edge of the airfoil.

b. The force exerted on an airfoil is

1
FL = §pU2ACL

with A the plan area of the airfoil. However the different pieces of the rotor will be moving
at differing speed. So we will consider a section of the blade dA = cdr :

1
dFF = EpQ2cCLr2dr

For 4 blades the total force is therefore

R 1 R
Fr :/ 4dF = 3 (4p920)/ Crridr
0 0



Substituting y = r/R, dy = dr/R,

1 1
Fr = 5(4ps22cR3) / Cry’dy
0

This is in the desired form, with
q= (4pQ2cR3)
c. The angle of attack is

oz(r)zoz()(l—%), o = 5°

The lift varies as
Cr(a) = 0.6 (14 0.233c) (cv in degrees)

Doing the integral :

1 1
/ Cryidy = / (1.299 — 0.3495y)y*dy = 0.3456
0 0

The force on the helicopter is 7651.8N. Rearanging, this gives

Fr

= 44281.25
0.3456

q=2

Th
e , g 4428195

T 4pcR? T 4x 1.2 x0.12 x 63
This gives 2 = 18.87/s, or 180RPM.

Question 5. Solution

= 355.9

a.l.

Az sinwt) + %(—Ay sin wt)

= (Asinwt) — (Asinwt)
=0

a.ii. For an incompressible flow, V.u = 0. This is satisfied, so this velocity could be
that for incompressible flow.
b.i. Continuity equation :

Ou, ~ Ouy

ox oy

=0



Since the flow is fully developed, aa“; = 0, so %L; = 0. Integrating this, u, =const.
At the boundaries we have the result u, = Vi, so the velocity u, must take this value

throughout.
ii. The x-component of the NSE is

Ouy +u
o0x Y

ou,
+ Uy

Ou, 19p . %u, 0%u,
ot

Oy - _;833 Ox? * 0y?

|+
There are no body forces, so f, = 0. The flow is not time-dependent, so % terms are
zero. The flow is fully developed, so the flow profile does not change with x, so derivatives
w.r.t. this variable are also zero. This leaves

Oy 10p 0? Uy

Yy dy  pox T oy?

u, is a function of y alone, so the derivatives become ordinary. We now have expressions
for u, and 22 : substituting these in gives
4 ox

du, K d?u,
v

Rearanging this gives the result in the question.

iii. Solving this equation is quite challenging : there are two possible approaches. One
is to regard this as a linear inhomogeneous 2nd order equation and look for a particular

solution. The method hinted at in the question is to make the substitution X = d;;,
which results in the 1st order equation
aX _Vwy_ K
dy v vp
Thus ixX
/V_WX_ﬁz/dy:erC (2)
v vp

The lhs of this expression is in the form given in the question, with

v
a=-2 and b:—E
v vp

Thus equation (2) becomes

1
alog(aX—i—b):y-l—C



(constants A and C' are basically the same constant, just rewritten appropriately). We
can integrate this again

A
AU, = ZeW _ by + B
a
Multiplying through by ¢ may simplify things
2y = Ae™ — aby + B

(redefining B again). Now the constants A and B can be evaluated from the boundary
conditions. u, =0 at y=0and y = h, so

A= ?Lbh ’ B _;jbh
™ —1 e’ —1
and
bh (e“y _ 1) by
= Uy =— | — - =
a \ o _ 4 a
Writing
b__ K
a Vivp
gives

Vwhv 1 Vwp

which can also be written as
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Question 6. Solution

a.i. Dimensions :

(gH)  [L°T77]
N [T7Y
D [L]
p (ML

Writing the expression as

(gH)*N'Dep" = [L*T~**[T '] [L]*[M L)



we want to find a — d that make this dimensionless. Working through gives

gH
th=3ep
as the first dimensionless group.
a.ii. Dimensions of Q are [L3T~!], so
Q
I, =
T ND3
Dimensions of y are [ML T, and ¢ = —2
L
= §p2,

which is a Reynolds number of sorts. Buckingham-II theorem requires that II; can be
written as a function of the others, in other words

gH _ Q _u
N2D2 ND3’ ND?p

a.iii. We now have 2 extra variables. One, the roughness, might be dimensionless
already, but if not we can create a new group

ngﬁ

The other will be based on the compressibility K. This has units of Pa, ie. dimensions
of pressure, and so [K] = [M L 'T~2]. Using the repeating variables from before,

K
Iy = ——+
N2D2p
These can just be inserted into the previous expression :

gH o ( Q _» K n
N2D? ND3 ND?p’ N2D?p’ D

b. In vector notation the momentum equation is written

Duy 9
= F
th Vp + uVou +

(from the equation sheet). Dividing through by the density

Du 1
—=--V Vv?
D1 p p+vViu+ f



Here f is the body force per unit volume, which here is the accelleration due to gravity g.

We need to find dimensionless versions of each of the terms here. The velocity becomes

u t U()t
= — and the time t* = = —
— U Ly/Uy Ly

where starred variables represent dimensionless quantities. Using these the first term is

Du _ Uy D°
Dt Lo Dt*

- Ly Dt

(Uou™)

Working through the other terms in a similar manner we get

U2 D*u* 1 U2 Us .o

~0 - ___V* * —V* *

I, Dt oL D TVpzY vt
Dividing through by [Lj—‘j gives

D*u* 1 v 9 gLg
This is now dimensionless. We can identify
v 1
ULy  Re

as the Reynolds number, a measure of the relative importance of the viscous term, and

gLo_ 1
ug  Fr

as the Froude number, a measure of the relative importance of gravitational effects.



