3d Transpo Equation using FV method

Mesh Generation

Matrix inversion

Navier-Stokes equations

CFD – Mathematical basics SOE3213/4: CFD Lecture 2

September 26, 2006

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3d Transport Equation using FV method

Mesh Generation

Matrix inversion

Navier-Stokes equations

3d Transport Equation using FV method

$$\frac{\partial \phi}{\partial t} + \nabla . (\mathbf{u} \phi) = \nu \nabla^2 \phi + S_{\phi}$$

Divide region of interest into cells, integrate over each cell.

1st term

$$\iiint_{\delta V} \frac{\partial \phi}{\partial t} \ dV = \frac{d}{dt} (\phi \delta V) = \frac{\phi^{t+\delta t} - \phi^t}{\delta t} \delta V$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

3d Transport Equation using FV method

Mesh Generation

Matrix inversion

Navier-Stokes equations

2nd term

e.g.

- convection of fluid into/out of cell

$$\iiint_{\delta V} \nabla . (\mathbf{u}\phi) = \sum \phi \mathbf{u} . \delta \mathbf{A}$$

$$\sum \phi \mathbf{u}.\delta \mathbf{A} = (\phi \times u_x A)_w - (\phi \times u_x A)_e$$

CFD mesh can be

- colocated
 - all variables stored at cell centres
 - need to interpolate
- staggered
 - fluxes stored at cell faces
 - still need to work out fluxes by interpolation

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

3d Transport Equation using FV method

Mesh Generation

Matrix inversion

Navier-Stokes equations

- 2 ways to get face value from cell centres
 - 1 Value from upwind cell centre upwind differencing
 - 2 Average of the cell centres central differencing

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Often referred to as differencing schemes

3d Transport Equation using FV method

Mesh Generation

Matrix inversion

Navier-Stokes equations

1 Different errors :

- Upwind differencing introduces *numerical viscosity*.
- Central differencing introduces phase errors.

2 Also more sophisticated – blended differencing, higher order...

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

3d Transpor Equation using FV method

Mesh Generation

Matrix inversion

Navier-Stokes equations

Mesh Generation

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Advantage of FV method – cells can be any shapes necessary. However, numerical errors can be caused by bad meshes.

- Cells usually cubic (hexahedral) or tetrahedral
- (square or triangular in 2d)
- Tets (triangles) generated by automatic mesh generation (Fluent)
- Hex/square probably better numerically
- Cells should not be
 - long and thin
 - faces at odd angles
 - widely varying sizes

3d Transpo Equation using FV method

Mesh Generation

Matrix inversion

Navier-Stoke equations Matrix inversion

Diffusion & source terms also discretised similarly. Net result – numerical scheme (implicit)

 $\mathcal{M}[\phi^{t+\delta t}] = Q$

Solution step involves evaluating \mathcal{M}^{-1} to advance solution by 1 (time)step.

In theory any valid technique could be used to invert \mathcal{M} . In practice, \mathcal{M} is huge – numerical techniques need to be carefully constructed.

A good matrix algorithm needs to be

- Fast should scale as N or N log N
- Efficient only store non-zero elements of the matrix

3d Transpo Equation using FV method

Mesh Generation

Matrix inversion

Navier-Stoke equations

Most matrices are sparse. Eg. 1d FV method gives :

Only the elements D, A and B need to be stored in memory.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

3d Transpo Equation using FV method

Mesh Generation

Matrix inversion

Navier-Stokes equations

Navier-Stokes equations

$$\nabla .\mathbf{u} = \mathbf{0}$$

$$\frac{\partial u_x}{\partial t} + \nabla .(\mathbf{u} u_x) = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \nabla^2 u_x$$

$$\frac{\partial u_y}{\partial t} + \nabla .(\mathbf{u} u_y) = -\frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \nabla^2 u_y$$

$$\frac{\partial u_z}{\partial t} + \nabla .(\mathbf{u} u_z) = -\frac{1}{\rho} \frac{\partial p}{\partial z} + \nu \nabla^2 u_z$$

- Incompressible form
- Cons. of mass, momentum
- Linked u_x , u_y , u_z , p all appear
- Non-linear u u_x