CFD - Mathematical basics
 SOE3213/4: CFD Lecture 2

September 26, 2006

3d Transport Equation using FV method

$$
\frac{\partial \phi}{\partial t}+\nabla \cdot(\mathbf{u} \phi)=\nu \nabla^{2} \phi+S_{\phi}
$$

Divide region of interest into cells, integrate over each cell.

1st term

$$
\iiint_{\delta V} \frac{\partial \phi}{\partial t} d V=\frac{d}{d t}(\phi \delta V)=\frac{\phi^{t+\delta t}-\phi^{t}}{\delta t} \delta V
$$

2nd term

- convection of fluid into/out of cell

$$
\iiint_{\delta V} \nabla \cdot(\mathbf{u} \phi)=\sum \phi \mathbf{u} \cdot \delta \mathbf{A}
$$

e.g.

$$
\sum \phi \mathbf{u} \cdot \delta \mathbf{A}=\left(\phi \times u_{x} A\right)_{w}-\left(\phi \times u_{x} A\right)_{e}
$$

CFD mesh can be

- colocated
- all variables stored at cell centres
- need to interpolate
- staggered
- fluxes stored at cell faces
- still need to work out fluxes by interpolation

3d Transport Equation using FV method

2 ways to get face value from cell centres
(1) Value from upwind cell centre - upwind differencing
(2) Average of the cell centres - central differencing

Often referred to as differencing schemes
(1) Different errors:

- Upwind differencing introduces numerical viscosity.
- Central differencing introduces phase errors.

(2) Also more sophisticated - blended differencing, higher order...

Mesh Generation

Advantage of FV method - cells can be any shapes necessary. However, numerical errors can be caused by bad meshes.

- Cells usually cubic (hexahedral) or tetrahedral
- (square or triangular in 2d)
- Tets (triangles) generated by automatic mesh generation (Fluent)
- Hex/square probably better numerically
- Cells should not be
- long and thin
- faces at odd angles
- widely varying sizes

Matrix inversion

Diffusion \& source terms also discretised similarly. Net result numerical scheme (implicit)

$$
\mathcal{M}\left[\phi^{t+\delta t}\right]=Q
$$

Solution step involves evaluating \mathcal{M}^{-1} to advance solution by 1 (time)step.

In theory any valid technique could be used to invert \mathcal{M}. In practice, \mathcal{M} is huge - numerical techniques need to be carefully constructed.

A good matrix algorithm needs to be

- Fast - should scale as N or $N \log N$
- Efficient - only store non-zero elements of the matrix

Most matrices are sparse. Eg. 1d FV method gives :

Only the elements D, A and B need to be stored in memory.

Navier-Stokes equations

$$
\begin{aligned}
\nabla \cdot \mathbf{u} & =0 \\
\frac{\partial u_{x}}{\partial t}+\nabla \cdot\left(\mathbf{u} u_{x}\right) & =-\frac{1}{\rho} \frac{\partial p}{\partial x}+\nu \nabla^{2} u_{x} \\
\frac{\partial u_{y}}{\partial t}+\nabla \cdot\left(\mathbf{u} u_{y}\right) & =-\frac{1}{\rho} \frac{\partial p}{\partial y}+\nu \nabla^{2} u_{y} \\
\frac{\partial u_{z}}{\partial t}+\nabla \cdot\left(\mathbf{u} u_{z}\right) & =-\frac{1}{\rho} \frac{\partial p}{\partial z}+\nu \nabla^{2} u_{z}
\end{aligned}
$$

- Incompressible form
- Cons. of mass, momentum
- Linked $-u_{x}, u_{y}, u_{z}, p$ all appear
- Non-linear - $\mathbf{u} u_{x}$

