Fabrication and STM Nanostructuring of tetrahedral amorphous Carbon

Teja Roch
STM Nanostructuring of Carbon

Fabrication and STM Nanostructuring of tetrahedral amorphous Carbon (ta-C)

Content:

Who are we?

What are we doing?

Why are we doing Nanostructuring?

→ Results
STM Nanostructuring of Carbon
STM Nanostructuring of Carbon

Working fields

Aim:
Customized solutions for the problems of our clients

<table>
<thead>
<tr>
<th>Business fields</th>
<th>Core services</th>
<th>Laser materials processing</th>
<th>Plasma coating processes</th>
<th>Materials / Nanotechnology</th>
<th>System technology</th>
<th>Process simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal / Cutting</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Joining</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Surface treatment</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Thermal coating</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>PVD - Vacuum coating</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVD - Atmospheric coating</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Large, medium and small relevance of the core services for the business fields
STM Nanostructuring of Carbon

Tetrahedral Amorphous Carbon

ta-C = tetrahedral amorphous Carbon

Atomic arrangement: amorphous
Binding: predominantly sp³
Hydrogen content: low (< 1%)
STM Nanostructuring of Carbon

Diamond
- tetrahedral sp^3 bonds
- three-dimensional network

Graphite
- trigonal sp^2- bonds
- two-dimensional network

Amorph
- $sp^3 + sp^2$ bonds
Properties of Carbon films

<table>
<thead>
<tr>
<th></th>
<th>Graphite</th>
<th>a-C</th>
<th>ta-C</th>
<th>Diamond</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp³ fraction*</td>
<td>0%</td>
<td><40%</td>
<td>40-90%</td>
<td>100%</td>
</tr>
<tr>
<td>Density (g/cm³)*</td>
<td>2.3</td>
<td>2-2.3</td>
<td>2.6-3.2</td>
<td>3.52</td>
</tr>
<tr>
<td>Resistivity (Ωcm)*</td>
<td>10⁻²</td>
<td><1</td>
<td>10⁶-10¹¹</td>
<td>10¹⁶</td>
</tr>
<tr>
<td>Elastic modulus (GPa)*</td>
<td>686/low</td>
<td></td>
<td>400-800</td>
<td>1200</td>
</tr>
<tr>
<td>Thermal stability (°C)*</td>
<td>>700</td>
<td>>200</td>
<td>600 (300)</td>
<td>>700</td>
</tr>
<tr>
<td>Heat capacity (J/kg K)</td>
<td>427***</td>
<td></td>
<td>600****</td>
<td>709 ***</td>
</tr>
<tr>
<td>Heat conductivity @ 25°C (W/m K)**</td>
<td>400 (6)</td>
<td>1-10</td>
<td>900-2000</td>
<td></td>
</tr>
</tbody>
</table>

Properties of Carbon films

Heat stability depends on sp²/sp³ ratio:
→ High sp³ content makes ta-C more stable
R. Kalish et al. APL 74 (1999), 2936

Heat capacity depends on sp²/sp³ ratio:
→ Large optical gap higher heat capacity
(measurement for a-c:H)
W. Hurler et al. Diam and Rel. Mat. 4 (1995) 954
Influence of graphitic top layer

Film-Volume:
dominantly: sp^3 – carbon bonds

Film-Surface:
dominantly: sp^2 – carbon bonds
(relaxation of non equilibrium states)

Film preparation:
Filtered high current arc

E-Modul-measurement:
Laser accustic

STM Nanostructuring of Carbon

Fraunhofer IWS Dresden
Laser Acoustic measurement

Measurement Opportunities:

- Mechanical properties
- Elastic modulus
- Non-destructive
- Thickness measurements
Filtered Cathodic Arc

Principle (Aksenov 1975)

- curved magnetic field
- Manipulation of the electron trajectory to spiral trajectories along streamlines of the magnetic field
- electrostatic attraction Electron-Ion → Movement of the ions along the electron trajectories
- Heavy particles moving linearly → adsorption to the filter
STM Nanostructuring of Carbon

Ultrathin carbon layers on magnetic storage media

lubricant (\approx 1 nm)
carbon top-coat
magnetic layers (\approx 25 nm each)
glass substrate

service conditions:
distance \approx 10 nm
velocity \approx 150 km/h

aim:
increase of storage density
5 Gb / in2 \rightarrow 100 Gb /in2
by reduction of the thickness of the protecting layer to < 3 nm
Example: ta-C top layers on magnetic storage media

aim: protection against corrosion and scratching
film system: tetrahedrally bonded amorphous carbon (ta-C)
technology: pulsed high current arc with magnetic filtering (Φ-HCA)

<table>
<thead>
<tr>
<th>demands</th>
<th>ta-C film</th>
</tr>
</thead>
<tbody>
<tr>
<td>low film thickness</td>
<td>dense at $1.6\ nm$</td>
</tr>
<tr>
<td>low roughness</td>
<td>RMS $< 1\ nm$</td>
</tr>
<tr>
<td>particals</td>
<td>$1\ peak > 10\ nm$ on $0.1\ m^2$</td>
</tr>
<tr>
<td>corrosion resistance</td>
<td>achieved at $1.6\ nm$</td>
</tr>
<tr>
<td>scratch resistance</td>
<td>hardness $\geq 30\ GPa$ (at $5\ nm$)</td>
</tr>
<tr>
<td>magnetics</td>
<td>no influence</td>
</tr>
</tbody>
</table>
STM Nanostructuring of Carbon

STM structured ta-C

STM induced local graphitisation of ta-C

STM induced local oxidation of ta-C

Made by T. Mühl
Nano graphitisation of ta-C for data storage

Problem:
- High speed SPM writing difficult
- Rewriting of ta-C probably not possible

→ Long term data storage!

Physikalisch-Technische Bundesanstalt 11.05.2007:
„there is no optimum system for all long term data storage applications“*

Difficulties:
- Lifetime of the data storage medium
- Availability of Hardware
- Availability of Software
- …

Application: Libraries, government, bank, …

*http://www.ptb.de/de/org/2/251/251/lebensdauer.pdf
Nano graphitisation of ta-C for data storage

Initial Situation:

- IWS-Standard: PVD-deposition of ta-C
- Phys. effect: Graphitisation of taC:
 \[\text{sp}^3\text{-bonding} + \text{Energy} \Rightarrow \text{sp}^2\text{-Bonding} \]
 \[\Rightarrow \text{Change of characteristics:} \]
 - Density ↓ \Rightarrow Volume ↑ \Rightarrow Film thickness ↑ \Rightarrow convexe
 - refractivity ↓
 - electric conductivity ↑
 - thermal conductivity ↓

- IWS-Patent: use of the phys. Effect for data storage
 \[\Rightarrow \text{feasibility proved} \]
Solution writing: STM or C-AFM?

- **Principle:** A voltage is applied between probe and sample
 \[\Rightarrow\text{Nanostructuring is possible with both methods!}\]

- **Resolution:** < 10 nm \[\Leftrightarrow\text{current flow through one atom (optimum conditions)}\]
- **Probe:** metal filament (e.g. tungsten)

- **Resolution:** ca. 13 nm \[\Leftrightarrow\text{depending on probe diameter}\]
- **Probe:** conductive cantilever (Si) coated or doped
Example of AFM Lithography:

- Nanostructuring with high resolution is possible e.g. line width ~13 nm
- Probe stability is critical!
- AFM Litho needs low moisture (<30%) and tip conditions are critical
Ta-C is isolating is STM possible?

Scanning Probe Spectroscopy:
Current to tip movement of Ta-C/Si:n, HOPG and Si:p

Initial STM parameters:
- Ta-C/Si:n 4V/70pA
- Si:p 1V/1nA
- HOPG 0,2V/1nA

- Exponential behaviour is expected
- The Ta-C graph is bended, if the tip is moved towards the sample

→ STM tip is close to the ta-C surface
STM Nanostructuring of Carbon

AFM-Roughness of ta-C

- ta-c on Si (Ta-C/si)
 - 20 nm ta-C
 - Silizium
 - RMS = 0,066 nm

- ta-c on Si with Cromium Inter layer (ta-C/Cr/Si)
 - 20 nm ta-C
 - 30 nm Cr
 - Silizium
 - RMS = 0,148 nm

- ta-c on Si with Cromium Inter - and top layer
 - 20 nm ta-C
 - 30 nm Cr
 - 1 nm Cr
 - Silizium
 - RMS = 0,160 nm
STM structuring on different Substrates

ta-C/Si

- Topography profile
- Structures on ta-C/si are about 2 nm high

ta-C/Cr

- 9 Bits written on 20 nm ta-C
 - Voltage 10 V, current 1 nA
 - Speed 0.5 sec/bit
- High structures at substrate with Chromium inter layer
- Topography profile
- Structures on ta-C/Cr are up to 18 nm high
IV Characteristics

- IV characteristics are averages of the marked areas.
- Conductivity is higher in the structured area
- IV characteristics of structured areas are untypically. Current drops with rising voltage
STM Nanostructuring of Carbon

Structure topography

Topography profile along the blue line

Structuring at 10 V, 1 nA and different writing speed:
Area 1: 0.3 s/bit
Area 2: 0.2 s/bit
Area 3: 0.1 s/bit
Area 4: 0.075 s/bit

Topography profile: lateral bit size ~10 nm
Bit high ~3-10 nm

Positive voltage at the substrate!
Variation of writing speed

- Variation of the STM pulse duration at constant voltage (10 V) and current (1 nA)
- pulse duration was varied between 0.075 s and 0.005 s
- every data point in the graph is an average of 100 bits
- the structuring high shows a logarithmic dependence on the structuring time

Lineares Fitten von Datenhintergrund

Daten: Datenhintergrund_c
Modell: ExpDec1
Gleichung: \[y = A_1 \exp\left(-\frac{x}{t_1}\right) + y_0 \]
Gewicht: Keine Gewichtung.

\[y_0 = 4.82427 \pm 0.26819 \]
\[A_1 = -2.85792 \pm 0.42033 \]
\[t_1 = 0.01847 \pm 0.0079 \]

\[\chi^2/\text{DoF} = 0.05933 \]
\[R^2 = 0.96678 \]
Is ta-C graphitisation thermic or electronic induced?

Thermic: depends on power
Electronic: electron energy (voltage)

Mühl et al. revealed that Joule heating due to introduced power can be ruled out.

T. Mühl APL 85 (2004), 5727
Difficulty:
- If STM-structuring is not performed in UHV but atmosphere
 → etching of carbon can appear
 → Probe heating/sample heating (?!)
- For AFM-structuring it is less difficult
Data Lifetime

Graphite is stable against diamond → a long lifetime could be expected:

To simulate a longer timescale an accelerated aging test was performed
Substrate = periodic structured ta-C

Test period 5 x 24h
- t = 0-2 h, T = 25-70 °C, RH = 85 %
- t = 2-8 h, T = 70 °C, RH = 90-95 %
- t = 8-24 h, T = 70-25 °C, RH = 85 %

SEM pictures where made before and after the life time test

→ No change of the graphitisation could be observed
Conclusion

• Production of particle free ta-C Films is possible
• Ta-C properties can be controlled
• STM Nanostructuring of ta-C with resolution < 10 nm is possible
• No influence of heat (T = 70 °C) and moisture (90 % RH) on graphitisation
• Pulse duration of 5 ms revealed an average structure high of 2.5 nm
• Positive Voltage must be applied to the substrate
• Maximum graphitisation high depends on Voltage and Film thickness
Thank you for your attention!