Governing for Demand Management Innovations in Germany

Dr Caroline Kuzemko
Senior Research Fellow, IGov
University of Exeter
Ofgem, 17th March 2016

Presentation in Sum

- This work part of the IGov project:
 - Based on IGov working paper:
 http://projects.exeter.ac.uk/igov/working-paper-governing-for-demand-management-innovations-in-germany/
- Demand management defined
- Overview of demand/flexibility in Germany
- Overview of German transition governance
- Demand policies, issues and potential solutions:
 - Energy Efficiency
 - Distributed energy
 - Demand side response/flexibility
- What can we take from this?

Demand Management Defined

- D3: Distributed Energy; Demand Side Response (DSR); Energy Efficiency: DECC 2014; Ofgem 2015
- Characteristics of a demand oriented system:
 - A distributed energy system, preferably with high rates of citizen and/or community participation
 - Flexibility of demand (and supply)
 - New business models that enable demand response, efficiency and flexibility (energy services)
 - Smart, energy efficient and interconnected networks
 - Open availability of relevant market data
 - Storage

German Demand Overview

- Germany ranks highly (no. 1 American Council for an Energy Efficient Economy's 2014 benchmark)
- Primary energy consumption fell 9% from 2008 to 2014 (adjusted 7%)
- Electricity demand has fallen versus 2008, whilst economy has grown (delinking)
- Electricity is 25%, heat 47% of energy consumed
- DSR: in 2013 about 3% of demand was flexible (whilst estimates are that over 50% could be flexible)
- Distributed:
 - 46% renewables owned by citizens; 41% investor groups,
 12.5% Big 4
 - 1.5m + households with rooftop solar

Development of primary energy consumption by energy source

Adjusted (for temperature) figures in petajoules (PJ)

^{*} Provisional **First estimate ***Renewable, nuclear energy, other

Indexed economic growth and electricity usage (1990 = 100)

Evolution of cost of rooftop PV systems: Germany

German Transition Governance: Overview

- Political System:
 - Social market economy, goal oriented governance
 - Popular support for environment/anti-nuclear
 - Proportional representation: Greens (Red-Green Coalition 1998 to 2005)
 - Federal system: distributed power (16 Länder)
- Current government SDP/CDU/CSU: more focus on economic costs, energy to Economic Ministry (BMWi)
- Distributed energy system: municipals dominated
- 2000: Erneuerbare-Energien Gesetz (EEG)
- Energiewende 2011:
 - Nuclear phase-out: implications for RES
- Electricity Market Reform White Paper (EOM 2.0)

Momentum for Improved Demand Strategy

- Supply oriented transition so far...
 - Nuclear phase out, coal now
 - Growth in RES, requirement for demand flexibility
- But no capacity market for flexible supply

Estimates miss 2020 Energiewende demand targets

Table 1: Key German Energiewende Targets

		2020	2025	2030	2035	2040	2050
Greenhouse gas emissions	Reduction of GHG emissions compared to 1990 levels	-40%		-55%		-70%	-80 to -95%
Nuclear	Phased shut down of all nuclear power plants by 2022	11 by 2015	Rest 2022				
Renewable Energies	Share in final energy consumption	18%		30%		45%	Min 60%
-	Share in gross electricity consumption		40 to 45%		55 to 60%		Min 80%
Energy efficiency	Reduction of primary energy consumption compared to 2008	-20%					-50%
	Reduction of gross electricity consumption compared to 2008	-10%					-25%

Energy Efficiency Policies

- National Action Plan Energy Efficiency (NAPE): 30 mt CO2
- Households/buildings:
 - Renovate remaining stock by 2050 (2% per annum)
 - Strict standards for new builds (zero carbon)
 - Loans (.5 to 1%) and grants via KfW €2bn available p.a.: 4.1m
 homes and 2,900 non-residential retrofitted over 10 years
- Commercial/Industry:
 - Subsidies for upgrading technology & equipment
 - Mandatory energy efficiency audits every 4 years
 - Energy Efficiency Networks Initiative (500)
- ESCo's: established market 500-550 in operation
- Industrial policy: promoting 'green' technologies, establishing efficiency supply chains, skills/training, employment

German Energy Efficiency Policies

(Type and Sector)

	Regulatory instruments	Policy support	Economic instruments	Information and education	Voluntary approaches	RD&D
Cross-sectoral		_				
Energy utilities						
Industry						
Existing buildings						
New buildings						
Appliances						
Lighting						
Transport						

DARK GREEN = Several relevant policies are in place. **GREEN** = At least one relevant policy is in place. WHITE = No relevant policies have been identified in EE PAMS.

Issues and Emerging Solutions

- Main fear is missing 2020 target of -20% primary energy consumption versus 2008 (est.s no include NAPE)
- NAPE delays: not all policies implemented
- 1Q16: Green Book for Energy Efficiency: comprehensive strategy for long-term demand reduction
- EOM 2.0 White Paper:
 - Considering greater coordination between incentives for efficiency and flexibility and in energy market design
 - Power to Heat: assumption that heat pumps powered by ambient heat and renewables run at 340% efficiency
 - Power to Mobility: assumption that electric transport to run at 80% efficiency compared to 25-40% combustion engine
 - NRM 11: recharging points, BMWi €2bn incentive scheme for greater electric mobility

Distributed Energy (Civic Participation)

- 2000 EEG design for distributed system:
 - Create a reliable mass market, lower transmission losses, more efficient use power/heat and civic participation, distribute benefits and embed the transition
 - FiT: low risk (lowest cost of capital for RES in Europe); and priority access for RES
 - Subsidies for storage: focus on small-scale (PV)
- Finance: KfW, Landesbanken, Bürgschaftsbanken
- BUT:
 - EEG charges: €23bn distributed through bills (taxes, grid)
 - 10% of consumers have exemptions (regressive distrib.)
 - Average family faced 70% rise power prices 1998-2015:
 EEG 20% of tariff (whilst wholesale prices fall)
 - Less as % disposable income (low in Europe) and welfare

Governance Changes and Implications

- EEG 2014:
 - Annual corridors (min and max) for each RES
 - Direct marketing (CfDs) for plants over 100kW (2014-17)
 - 2017: auctions for RES generation (over 150kW (PV))
 - Reduction in exemptions for industry/self-consumption
- New large-scale projects: Offshore wind (compromise with Big 4); North-South transmission
- Implications for distributed energy?:
 - Medium plants face more market risk, assume greater system responsibility, and must pre-qualify at auctions
 - Effects on cost of capital (higher risk)
 - Big investments in large-scale generation/transmission focuses transition resources away from small scale projects

Local markets?

- Pockets of innovation: 6 E-Energy projects (IT)
- Re-municipalisation water, power, gas + (Hamburg)
- Innovative suppliers:
 - Lichtblick: virtual power plants (Swarm Energy Concept)
 - Grundgrün: regional business model/guarantee of origin
- Obstacles:
 - Regulation behind advances new framework needed
 - Lack of locational pricing and balancing
 - Large-scale storage would enable, but not a focus
 - DSOs:
 - Fragmented market (900), small companies: 90% less than 100,000
 - Lack of transparency re: costs and regulated revenue too high?
 - Not sufficiently incentivised to become 'smart' (digitalisation, forecasting) = the 'intelligence gap' - BNetzA addressing now

Demand Side Response

- Flexibility as the new paradigm of Energiewende?
 - Intermittent generation forces more focus on demand flexibility,
 and flexibility cheaper than new generation
 - Interconnection solves some issues around intermittency
 - But.. no clear regulatory framework for DSR (or aggregation)
- Ancillary Services Markets
 - Mainly large industrial plants and pumped storage active
 - Rules as barriers: bid size, product interval, pre-qualification; and grid fees apply to flexible load but not generation

Table 2: Auctioning Rules on Reserve Markets

Reserve	Frequency of action	Product duration	Minimum bid size	Pooling
Minute/Tertiary	Each working day	4 hours	5 MW	Yes
Secondary	Weekly	High (8am to 8pm) Low (8pm to 8am) Sat/Sun: all day	5 MW	Yes
Primary	Weekly	1 Week	1 MW	Yes

Source: BMWi 2015e: 65

DSR – Emerging Governance

EOM 2.0 White Paper:

- Propose improved price signals for flexibility: extend shortterm trading so that trades close nearer to delivery time
- Secondary balancing and minute reserve should be tendered every day, and new short-term b/s market?
- Proposal that Minute Reserve product block should be reduced from 4 hours to hourly blocks
- Examine possibility for a situation based balancing capacity bidding process (relate to wind/solar generation)
- Change incentives for industrial consumers to use more (i.e. over 7,000 hours load factor and over 10GWh p.a. = exemptions from fees/surcharges/tax)
- Registered meter customers should be charged per hour according to wholesale price, improve visibility/flexibility

Aggregation of Flexible Load

- Aggregators just 'at the door' in Germany
- Minute, Secondary, Primary markets: pooling of loads
- Entelios AG, Lichtblick, Next Kraftwerke, Grundgrün, ESCOs: utilising latest IT and communications systems

Issues:

- Role of aggregator not recognised in law/no framework
- Requirement to act as balancing group manager and to sign multiple bi-lateral contracts (suppliers, generators, DSOs +)
- Absence of real time data

Solutions:

- EOM 2.0: suggests clarifying rules for aggregation of load, and simplifying access rules to balancing markets
- Replace multiple bi-lateral contracts with standardised contract
- Provide services without being a balancing group manager?

Take Away Points

- Detailed targets provide long-term vision beyond emissions, direction for policymakers, and drive policy changes: governance for transition as iterative process
- Transition as opportunity: green industry, supply chain skill
- Citizens and transition: distributed benefits enable deeper embedding of changes - but also protect vulnerable
- Risk matters for inclusive change: FiT enabled low risk
 RES markets and low cost of capital; accessible finance
- Technological and business model innovations ahead of regulations
- Emerging recognition of need to link efficiency and flexibility solutions, incentives and market designs

Introduction to IGov

- Innovation and Governance for a Sustainable, Secure and Affordable Economy – 4 years, 5 person team
- Complex inter-actions: governance and innovations
- Governance: objectives, policies, rules and incentives, as well as the political and institutional context
- Governance matters for innovation:
 - Pace and type: who loses, benefits and compensation
 - Governance can act to enable and to constrain innovation
 - Governance as providing direction and leadership
- International comparisons:
 - US (California, Texas, New York)
 - Denmark
 - Germany