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Computation of flow around Texas
Tech building using k-€ and Kato-
Launder k€ turbulence model

Department of Civil Engineering, BELL 4190, University of Arkansas, Fayetteville,

An efficient model F3Dke has been developed using a precon-
ditioned conjugate gradient procedure to solve the pressure correc-
tion equation. It is eight times faster than the work presented by
R.P. Selvam (J. Wind Engng Indust. Aerodyn. 1992, 41-44, 1619-
1627) and more than 16 times faster than explicit procedures.
Using this code, the flow around the Texas Tech building is com-
puted using the k-¢ and Kato-Launder k& turbulence models. The
computed pressures are compared with existing experimental
results. The computed turbulent kinetic energy from the Kato-
Launder k- model is compared with that from the regular k&
model. Copyright © 1996 Elsevier Science Ltd.
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Introduction

In Refs [1,2] the pressure around the Texas Tech building
is computed using the k-& turbulence model®. The com-
puted pressures are in good agreement with field results
except at the corners for certain angles of incidence. In
Ref. [4], Murakami et al. compared the turbulent kinetic
energy k for different turbulence models around a bluff
body and found that the k-¢ turbulence model over-esti-
mates the k in front of the building. Recently Kato—Launder
in Ref. [5] suggested a modified k-¢ model. They men-
tioned that this model improved the prediction of k& com-
pared to the standard k- model. In this work the suggested
k-e model in Ref. [5] is used to study the flow around the
Texas Tech building. The computed pressure p around the
building is compared with available experimental results.
The computed & is compared with the k from the standard
k-g model.

In Ref. [1], an efficient solution procedure which is 60%
faster than the usual procedure is suggested to solve the
Navier—Stokes equations using the SIMPLE procedure. In
this work a much faster solution procedure, the precon-
ditioned conjugate gradient (PCG), is applied. This pro-
cedure yields solution about eight times faster than the one
suggested in Ref. {1] in a scalar machine like a Sun work-
station. Using this technique a computer model called
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F3DKe is developed. This computer model can predict
wind flow around a building using 43 x 36 x 28 cells in less
than an hour in a Sun SPARCstation 10 or about 10 min
in Cray Y-MP. The implementation of the PCG procedure
will be discussed in detail for wind engineering problems.

Notation

turbulent kinetic energy
mean pressure

k
p
B
column vectors
A symmetric matrix
C constant of 0.09 used in the k- model
D diagonal matrix
ICCG incomplete Cholesky conjugate gradient

ICG Jacobian conjugate gradient

L lower triangular matrix

M preconditioning matrix

MICCG modified ICCG

PCG preconditioned conjugate gradient
P, production term

U; mean velocity in the x; direction
1% approach mean velocity

«, numbers computed in PCG

£ turbulent dissipation rate
vy constant ranging from 0 to 0.95 used in MICCG
p density of air
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Computer modelling

Turbulence modelling

The flow around the building is modelled using the time
averaged Navier—Stokes equations and the k-¢ turbulence
model. The equations are given in detail in Ref. [1]. With
respect to the k-& turbulence model; the standard -¢ turbu-
lence model (model 1) which was used in Ref. [1] and the
new version used by Kato—Launder (model 2) in Ref. [5]
are used in this work for comparison. The major differences
between model 1 and model 2 are in the computation of
the production term P,. In model 1, there is an excessive
generation of turbulence energy and P, in the vicinity of
the stagnation point leads to far too high levels of turbulent
viscosity, as reported in Refs [4,5]. To rectify this problem
model 2 is suggested in Ref. [5]. In models 1 and 2, P, is
computed as:

For model 1: P, = C,&57 and for model 2: P, = C,&5,S,.
where

S, =SQRT(0.5 x (U+U,;)*) x kle,C,,=0.09,
where
S5 = SQRT(0.5 x (U;~U;;)*) x kle .

Here subscripts of U refer to direction in the tensor
notation and a comma refers to differentiation. Using these
two production terms, the pressures, turbulent Kinetic
energy and velocity around a building are computed for
comparison.

Numerical procedure

The time averaged Navier—Stokes equations and the equa-
tions for the k-¢ turbulence model are solved in a rectangu-
lar, nonstaggered grid system as in Ref. [1]. The equations
are integrated using the control-volume procedure. The
momentum, % and & equations are solved by
SOR(successive over relaxation) point iteration with an
under-relaxation parameter of 0.7 for each cycle. Usually
2-5 point iterations are sufficient for these equations at
each cycle. To satisfy mass and momentum conservation
simultaneously, the SIMPLE procedure® is used. Addition-
ally, a pressure correction equation has to be solved for
this. After the pressure correction the equations are solved,
until that absolute sum of the residue reaches 0.3 times
the initial value, the pressures are updated using an under
relaxation factor of 0.2, as suggested in Ref. [1]. This cycle
is repeated until the absolute sum of the residue of all the
variables, except the pressure correction, reduces to 0.03
times the initial value. Each cycle is referred to as one outer
iteration. The number of point iterations suggested for the
momentum, k and & equations and the convergence criteria
for the pressure correction equations are the optimum
values arrived at from numerical experimentation.

Usually the pressure correction equation is the most CPU
time consuming step as reported in Ref. [7]. The rate of
convergence of the pressure correction equation is very
slow when SOR and other standard iterative procedures are
used due to the Neuman boundary condition, and the way
the coefficients of each equation are changing for different
control volumes. In this work the PCG procedure is used
to solve the pressure correction equations. This procedure
is suitable for solving a symmetric set of simultaneous

equations. The equations derived for a pressure correction
step using the control volume procedure are symmetric and
hence, the method is suitable.

As mentioned in Refs [8,9]; this procedure is more than
10 times faster than SOR. Also it has the advantage that
there is no need to specify any acceleration parameters as
in SOR. This procedure was already successfully used in
Ref. [10] for computing the drag coefficient of the power
conductors in Ref. [9] and the flow around a building due
to a tornado. Using these techniques a computer program
called F3Dke has been developed.

Implementation of PCG

The following is the preconditioned conjugate gradient
(PCG) algorithm for simultaneous equations of the type
AX =B, where A is a symmetric matrix and X and B are
unknown and known vectors.

PCG Algorithm.
Start from: R, = B-AX,
fori=1,2,..
Z,=M'R,
ifi=1

P =2,
else

B=ZRZ_ R,
P,=Z+pP,,
end if
a=ZR/PAP,
X1 = X+aP;
R..i = R~aAP;
if R; =0 or reached the required convergence then stop or
go for next iteration i

In this B, P, R, X and Z are vectors and « and B are
scalars. Here M is the preconditioning matrix and
superscript t refers to transpose of a matrix. A simple cho-
ice will be a diagonal matrix whose diagonal elements will
be the same as those of A. This preconditioner is called the
Jacobian conjugate gradient (JCG). Many other versions of
M are given in Refs [11,12]. The preferred one with respect
to storage limitation and efficiency in implementation will
be the incomplete Cholesky conjugate gradient (ICCG) in
Ref. [12]. In that, the M matrix is an incomplete Cholesky
factorization of the matrix A without any fill in. M can be
written as (L+D)D~'(D+L)". L is a strict lower triangular
matrix whose elements are same as A, and D is a diagonal
matrix. Using the notation of ae, aw, an, as, at, ab and
ap for east, west, north, south, top, bottom and diagonal
coefficients, respectively, in a control volume procedure for
a three-dimensional rectangular grid as in Ref. [6]; D can
be written as follows:

D;,, = ap,;,—t1-12-13
where

11 = ae,yj*(aey juty*(an, jatat, g ;1)) dig s

12 = an,; Man ot y*(ae, o ptat g 1))/ d; -k

13 = at;;,_ *(at - +y*(ae, o tan, ) dijst -
Here the indices i, j and k vary for a number of points
in the x,y and z directions. Because of symmetry, only the

upper or lower triangular part is stored. If the L matrix is
stored, it will have aw,as and ab, and if L' is stored it will
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have ae, an and at. Once D matrix is calculated; the solution
of MZ =R is by regular forward and backward substi-
tution. To implement this procedure only 11 vector storage
spaces are needed for ae, an, at, ap, D, B, X, R, Z, P and
ap. The solution of MZ =R is mostly scalar computation
and the rest of the PCG algorithm is highly vectorizable.
Methods to vectorize the solution process of MZ =R are
discussed in Refs [12,13].

Usually vy is taken as being close to 1, but less than 1
in calculating the D matrix. This implementation is called
the modified ICCG, i.e. MICCG(1,1). If y=0, then the
procedure is called (ICCG(1,1). In this work a vy value of
0.95 as recommended by Van Der Vorst in Ref. [13] is
used. For the first outer iteration the pressure correction
solution with the ratio of final absolute sum of residue to
initial absolute sum of residue is 0.3; the ICCG took 35
iterations and the MICCG with y=0.95 took 22 iterations.
Since both procedures have the same amount of compu-
tational work once D is calculated, there is a decrease in
computation by 37% for MICCG compared with ICCG.
The number of iterations needed to solve the pressure cor-
rection equation is less than 10 after the first outer iteration.

Computational efficiency of F3Dke

For comparison of computer time with the work in Ref. [1];
the same grid size of 43 x 36 x 28 in Ref. [1] is considered.
The F3Dke using the k- model 1; took 58 iterations to
converge and 170 min in Sun SPARCstation IPC, 49 min
in Sun SPARCstation 10 and 8 min in Cray-Y MP which
has a maximum performance of 330 Mflobs. Compared to
this the line iteration work in Ref.[1] took about eight
times the CPU time of F3Dke in a scalar machine like the
sun workstation.

The F3Dke is not completely vectorized. Even though
the JCG procedure is completely vectorizable and could
achieve a performance of 100 Mflobs; the over-all program
could achieve only 17.9 Mflobs. The MICCG procedure
could achieve 42.4 Mfiobs and the overall code achieved
13.86 Mflobs. With respect to CPU time; the MICCG took
less than the JCG. If the methods suggested in Ref. [13]
are utilized to further vectorize the MICCG procedure, the
MICCG may be much faster than the JCG.

When the F3Dke uses a steady-state solution procedure;
codes like TEMPEST, EXACT3, and Murkami et al. in
Ref. [4] use an explicit form of calculation as reported in
Ref. [14]. In comparison to 8 min of CPU time in Cray Y-
MP using the F3Dke; the TEMPEST took about 2.23 hr of
CPU time in Cray Y-MP!* and Murakami and his group
took more than 5 hr of CPU time in the equivalent machine
as reported in Ref. [15] to reach a steady-state solution.
Hence unless time dependent phenomena are necessary it
is cheaper to use steady-state or implicit procedures which
lead to steady-state.

Results

The Texas Tech experimental building has the dimension
of 9.1 x13.7 x4 m as reported in Ref.[16]. The building
and the flow region is discretized by 43 X 36 x 28 points.
The grid variations along the xz and the yz plane are shown
in Figures 1 and 2. The parameters considered for the wind
flow far away from the building are the same as those of
Ref. [1]. The wind is assumed to flow along the 9.1 m
width of the building. The pressure coefficients are calcu-
lated as

Figure 1 Discretization in the xz plane

Figure 2 Discretization in the yz plane

Cp =2(p—po)(pV?),

where p is the mean pressure, p is the density, V is the
approach mean velocity at building height and p, is the
reference mean pressure at free flow considered to be
zero here.

Using the F3Dke, flow around the building is computed
using the regular k- and Kato—Launder k-e. The Kato-
Launder k-& model took 66 iterations and 87 min compared
with 58 iterations and 49 min by a Sun SPARCstation 10
using a regular k-&¢ model. The computed pressures using
the regular and Kato-Launder k-¢ model are compared
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Figure 3 Comparison of mean pressure coefficients

with the available field’® and wind tunnel'’ results in
Figure 3. The computed pressures from both turbulence
models are almost the same except at the leeward roof. At
the leeward roof the Kato—Launder predictions are much
closer to the field and wind tunnel results.

The computed velocity field from the regular and modi-
fied k-e model at the same plane where the pressures are
compared is shown in Figures 4 and 5. The velocity vector
diagrams from both models are almost identical. In
Figures 6 and 7 the contours of turbulent kinetic energy for
the regular and Kato—Launder k-& model are plotted for the
same center plane. The regular k-¢ model has a maximum
of 5 on the windward side of the building. Whereas in the
case of the Kato—Launder k-& model, the maximum appears
to be about 2.5. The Kato—Launder model predictions of
the turbulent kinetic energy are much closer to the real situ-
ation. Since no measurements were available for k; it was
not possible to compare the computed value with field or
wind-tunnel measurements.

Conclusions

An efficient computer model F3Dke using the modified
incomplete Cholesky conjugate gradient (MICCG) pro-
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Figure 4 Velocity vector diagram for regular k-e model
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Figure 5 Velocity vector diagram for Kato-Launder k-¢ model
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Figure 6 Turbulent kinetic energy contour for regular ke
model

cedure to solve the pressure correction is developed. Most
of MICCG procedure is highly vectorizable. The algorithm
to implement MICCG for the wind engineering problem is
discussed in detail. The MICCG procedure is about eight
times faster than the line iteration work reported in Ref. [1].
The F3Dke took only about 49 min in a Sun SPARCstation
10 to compute the flow on a 43 x 36 x 28 grid. In Cray Y-
MP when the F3Dke took 8§ min, codes based on explicit
unsteady solution technique like the TEMPEST in
Ref. [14] took 2.23 hr and Murakami and his group'’ in an
equivalent machine took more than 5 hr to reach steady
state. Hence to compute steady-state velocity field the
F3Dke is very efficient and suitable to run in a work-
station environment.
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Figure 7 Turbulent kinetic energy contour for Kato-Launder k-
&£ model

The computed pressure coefficients on the Texas Tech
experimental building are compared with available exper-
imental results. The computed pressure coefficients and
velocity field over the center plane of the building from
both models are almost the same. The computed turbulent
kinetic energy from the Kato—Launder model is much
lower than the regular k- model on the windward side of
the building. Hence, the Kato—Launder model predictions
are much closer to reality. It can be concluded from this
work that if one is interested in velocity or pressure around
a building, it seems that it is immaterial which procedure
is used.
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