Perimeter, Area and Volume of Regular Shapes

Perimeter of Regular Polygons
Perimeter means the total length of all sides, or distance around the edge of a polygon.

For a polygon with straight sides this is the sum of all sides.

Eg. triangle rectangular parallelogram trapezium

\[
\begin{align*}
5 + 5 + 4 &= 14 \text{cm} \\
6 + 6 + 11 + 11 &= 34 \text{cm} \\
8 + 8 + 7 + 3 &= 30 \text{cm} \\
4 + 4 + 9 + 3 &= 20 \text{cm}
\end{align*}
\]
All dimensions given in cm (not drawn to scale)

For polygons with curved sides the perimeter is known as the circumference and is given by the formula

\[
\text{Circumference} = 2\pi r \quad \text{for a circle} \quad \text{and} \quad 2\pi \sqrt{\frac{a^2 + b^2}{2}} \quad \text{for an ellipse}
\]

Where \(\pi \) is a mathematical constant with the value of 3.142 (correct to 3 decimal places)
\(r \) is the radius of the circle (distance from centre to circumference)
\(a \) is the major radius of an ellipse
\(b \) is the minor radius of an ellipse

Eg. radius = 5

\[
\text{Circumference} = 2\pi r = 2 \times 3.142 \times 5 = 31.42 \text{cm}
\]

Area of Regular Polygons
The area of a polygon is the space it occupies in a single plane.

For squares, rectangles and parallelograms the area is given by

\[
\text{Area} = \text{base} \times \text{height}
\]

Eg.

\[
\begin{align*}
12 \times 12 &= 144 \text{cm}^2 \\
12 \times 4 &= 48 \text{cm}^2 \\
8 \times 7 &= 56 \text{cm}^2
\end{align*}
\]
Height is defined as the perpendicular distance between the pair of parallel sides
All dimensions given in cm (not drawn to scale)

For Triangles \[\text{area} = \frac{1}{2} \times \text{base} \times \text{height} \]

Where height is distance from apex to meet base at right angle

\[
\text{Area} = \frac{1}{2} \times 12 \times 3 = 18\text{cm}^2
\]

For Trapeziums \[\text{area} = \frac{1}{2} \times \text{sum of parallel sides} \times \text{height} \]

\[
\text{Area} = \frac{1}{2} \times (8 + 14) \times 7 = 77\text{cm}^2
\]

For Circles \[\text{area} = \pi r^2 \]

\[
\text{Area} = \pi r^2 \\
= 3.142 \times 5^2 = 78.54\text{cm}^2
\]

For a sector of a Circle \[\text{area} = \frac{\text{area of circle} \times \text{sector angle}}{360} \]

\[
\text{Area of sector} = \frac{\pi r^2 \times 60}{360} = 13.1\text{cm}^2
\]

For Ellipse \[\text{area} = \pi ab \]

\[
\text{Area} = 3.142 \times 10 \times 5 = 157\text{cm}^2
\]

Complex shapes for which there are no formulas should be divided into simple shapes. The area of each is then calculated and added together to determine the overall area.

\[
\text{Area} = A1 + A2 + A3 + A4 - A5
\]
Volume of Regular Shapes

Volume is the amount of space in 3 dimensions occupied by a shape.

Prism
A prism is any shape where the cross-sectional area is constant.

For any prism: \[\text{Volume} = \text{area of base} \times \text{height} \]

Rectangular Prism

- area of base = length \times breadth
- volume = length \times breadth \times height

eg. calculate the volume of a block with a square base of side 6cm and a height of 10cm

\[
\text{volume} = l \times b \times h = 6 \times 6 \times 10 = 360\text{cm}^3
\]

Shaded area is the base

Triangular Prism

- area of base = \(\frac{1}{2} \times \text{base} \times \text{height} \)
- volume = \(\frac{1}{2} \times \text{base} \times h_1 \times h_2 \)

eg. determine the volume of a component 16cm long with a triangular cross-section which has a base of 4cm and perpendicular height of 5cm

\[
\begin{align*}
\text{area of base} &= \frac{1}{2} \times 4 \times 5 \\
\text{volume} &= \frac{1}{2} \times 4 \times 5 \times 16 \\
&= 160\text{cm}^3
\end{align*}
\]

Shaded area is the base

Circular Prism

- area of base = \(\pi r^2 \)
- volume = \(\pi r^2 \times \text{height} \)

eg. calculate the volume of a cylinder with a radius of 5cm and a height of 4cm.

\[
\begin{align*}
\text{volume} &= \pi r^2 \times \text{height} \\
&= 3.142 \times 5^2 \times 4 = 314.2\text{cm}^3
\end{align*}
\]

Shaded area is the base
The volume of certain non-prismatic shapes can be determined by using the correct formula.

Sphere

\[
\text{volume of a sphere} = \frac{4}{3} \pi r^3
\]

eg. determine the volume of a spherical component with the radius of 7cm.

\[
\text{volume} = \frac{4}{3} \times 3.142 \times 7^3 = 1436.76 \text{cm}^3
\]

Pyramid and cone

\[
\text{volume} = \frac{1}{3} \times \text{base area} \times \text{height}
\]

Pyramid

\[
\text{volume} = \frac{1}{3} \times \text{base area} \times \text{height}
\]

Cone

\[
\text{volume} = \frac{1}{3} \pi r^2 \times h
\]

eg. calculate the volume of a cone with base radius of 6cm and perpendicular height of 10cm

\[
\text{Volume} = \frac{1}{3} \times 3.142 \times 6^2 \times 10 = 376.00 \text{cm}^3
\]

Volumes of irregular shapes can be determined by calculation if the mass and density of the material from which it is known or by displacement.

Calculation of volume using density and mass.

eg. density of substance from which an irregular object is made is 8500kg/m3. if it has a mass of 425kg, calculate its volume.

\[
\text{Volume} = \frac{\text{mass}}{\text{density}} = \frac{425}{8500} = 0.05 \text{m}^3
\]

Measurement of volume using displacement

\[
\begin{array}{c|c|c}
\text{1st reading} & \text{2nd reading} & \text{volume} \\
300cc & 500cc & 2nd reading – 1st reading \\
& & = 500 – 300 = 200cc
\end{array}
\]
Perimeter, Area and Volume of Regular Shapes Worksheet 1

Calculate the area of the following shapes

1. \[\text{Circle with radius 15 cm} \]
2. \[\text{Circle with radius 9.5 cm} \]
3. \[\text{L-Shape with dimensions 15 cm x 15 cm} \]
4. \[\text{Z-Shape with dimensions 7.8 cm x 4.5 cm} \]
5. \[\text{T-Shape with dimensions 3.5 cm x 12 cm} \]

6. A water tank is a cuboid with a base of 1.2m by 0.8m. How deep is the water when the tank contains 0.384m³ of water?

7. A classroom is 5m x 6m x 3m. Health regulations require that each student must have a minimum of 5m³ of air. How many students can occupy the room?

Calculate the volume of the following shapes. All dimensions in cm.

8. \[\text{Rectangular prism with dimensions 2 cm x 2 cm x 12 cm} \]
9. \[\text{Octahedron with side 2 cm} \]
10. \[\text{Cylinder with internal radius 0.75 cm and external radius 1.00 cm} \]
Perimeter, Area and Volume of Regular Shapes Worksheet 2

Calculate the shaded area of the following shapes

1.

2.

3.

4.

5.

6. An ingot 80 x 10 x 300mm is cast into a cylinder 120mm diameter. Calculate its length.
7. A rivet has a hemispherical head 6mm radius and a stem of 6mm diameter and 15mm length. Calculate the volume of 100 of the rivets.
8. What would be the volume of (a) air (b) plastic in a ball with 25cm diameter made from plastic 2mm thick?

Calculate the volume of the following shapes. All dimensions in cm.

9.

10.

11.

12.