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ABSTRACT: The properties of polymeric nanofibers can be tailored and
enhanced by properly managing the structure of the polymer molecules at
the nanoscale. Although electrospun polymer fibers are increasingly
exploited in many technological applications, their internal nanostructure,
determining their improved physical properties, is still poorly investigated
and understood. Here, we unravel the internal structure of electrospun
functional nanofibers made by prototype conjugated polymers. The unique
features of near-field optical measurements are exploited to investigate the
nanoscale spatial variation of the polymer density, evidencing the presence
of a dense internal core embedded in a less dense polymeric shell. Interestingly, nanoscale mapping the fiber Young’s modulus
demonstrates that the dense core is stiffer than the polymeric, less dense shell. These findings are rationalized by developing a
theoretical model and simulations of the polymer molecular structural evolution during the electrospinning process. This model
predicts that the stretching of the polymer network induces a contraction of the network toward the jet center with a local
increase of the polymer density, as observed in the solid structure. The found complex internal structure opens an interesting
perspective for improving and tailoring the molecular morphology and multifunctional electronic and optical properties of
polymer fibers.
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Fiber-shaped materials are the building blocks of many
natural systems1,2 and the enabling components of some of

the most important modern technologies.3−6 The advent of
nanotechnologies has enabled the synthesis of micro- and
nanoscale fibers by a variety of approaches, with a prominent
control on shape and composition.7 Experimental and
theoretical research efforts have evidenced enhanced electronic,
optical and mechanical properties of these innovative, almost
one-dimensional (1D) nanomaterials compared to the bulk
counterpart.7−9

Among 1D nanomaterials, polymer nanofibers deserve
particular attention, because the use of polymers is continu-
ously increasing in many fields, especially in low-end
applications, where cost considerations prevail over perform-
ances. In this framework, polymeric 1D nanomaterials offer
both low costs and physical properties enhanced by the
nanoscopic morphology and peculiar assembly of macro-
molecules within nanofibers.10−12 In particular, by reducing
the fiber diameter below a critical value, an increase of the
Young’s modulus can be obtained,10 demonstrating the
possibility of tailoring the mechanical properties by controlling

the geometry and supramolecular assembly in polymer
nanosystems. Moreover, the peculiar packing of organic
semiconductors in 1D nanostructures allows improved charge
mobilities, polarized emission, enhanced amplified spontaneous
emission and nonlinear optical properties to be observed, and a
control of energy transfer phenomena to be obtained.9−14

Therefore, predicting and managing the resultant polymer
supramolecular assembly and the nanofiber internal structure is
becoming increasingly relevant, aiming to ultimately optimize
the performance of polymer-based systems and devices through
smart engineering of the different processing steps.
Polymer nanofibers are mainly fabricated by elongating and

stretching a polymer solution or melt by mechanical, capillary,
or electrostatic forces.11,15,16 This may result in extended chain
conformation, very different with respect to standard solution
or melt processing methods (spincoating, casting, rapid
prototyping, etc.). The access to the fiber internal nanostruc-
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ture of the polymer macromolecules is however challenging. So
far, studies on the inner features of 1D polymeric systems have
utilized small-area electron diffraction (SAED),17 transmission
electron microscopy,18 infrared,19 and Raman20,21 spectros-
copies, however either the limited spatial resolution or the
inability to probe molecular orientation have prevented to
resolve the internal structure of the analyzed systems, having
submicrometer characteristic features.
In this work, we investigate the complex internal structure of

conjugated polymer nanofiber materials. In particular, the
nanoscale spatial variation of the fiber Young’s modulus, and of
the polymer density determined by near-field measurements,
evidence the presence of a stiff and dense internal core with
typical size of nearly 30% of the fiber diameter, embedded in a
softer and less dense polymeric shell. These findings are
supported by theoretical modeling and simulations of the
molecular structural evolution during the elongational flow of
semidilute polymer solutions at the base of electrospinning,
which predict substantial stretching of the polymer network,
accompanied by its contraction toward the jet center, as
observed in the solid structure. The understanding and
prediction of the internal structure of active fiber materials
can be very important for the design and realization of novel
advanced functional materials.
To our aim, a prototype conjugated polymer is used that

constitutes an unequaled tool for probing optically the fiber
internal nanostructure with nm-resolution. Fibers are made by
electrospinning the poly[2-methoxy-5-(2-ethylhexyl-oxy)-1,4-
phenylene-vinylene] (MEH-PPV), which is largely used in
lasers,22 field effect transistors,23 and light-emitting diodes.24

Randomly and uniaxially oriented free-standing, flexible mats of
fibers (Figure 1a) are produced by dissolving the polymer in a
mixture of good and poor solvents (see Methods).25 The fibers
emit visible light peaked at 605 nm as shown in Figure 1b,
where we also show the temperature dependence of the
emission. The photoluminescence (PL) peak blueshifts by
about 10 nm upon increasing temperature, which can be
attributed to a decreased conjugation length due to excitation
of torsional and liberation modes.26,27 More importantly, the
blueshift observed in fibers is smaller than that in thin films by
about a factor two,26 evidencing reduced sensitivity to torsional
distortions. This suggests irregular molecular assembly in the
fibers compared to the film, which motivates to investigate their
internal nanoscale structure much more in depth. Indeed, the
stretching process, whose dynamics is determined by
competing forces related to the applied electric field and
molecular interactions (surface tension and viscoelesticity), as
well as by rapid solvent evaporation, can result in complex
internal nanostructuring.28

To study the effects of such phenomena on individual fibers,
we determine their mechanical and densitometric properties by
nanoscale indentation experiments and scanning near-field
optical microscopy (SNOM). The local Young’s modulus of a
fiber deposited on quartz can be obtained with atomic force
microscopy (AFM) by measuring the nanoscale deformation
induced by a controlled load, applied along a direction
perpendicular to the fiber longitudinal axis and to the substrate
(Figure S3 in the Supporting Information). The mechanical
response of the nanofiber upon indentation depends on its
elastic properties, which are mainly related to the local density,
degree of crystallinity and arrangement of the polymer
molecules. Interestingly, the MEH-PPV fibers feature a spatially
nonuniform effective elastic modulus (Efiber), whose resulting

value is affected by the polymer structure underlying the
indentation region. Overall, in an axial region (whose width is
roughly 30% of the fiber diameter), Efiber is about twice the
value measured in the peripheral region which constitutes the
external layer of each fiber. However, due to the low thickness
of the fibers (typically <200 nm), these measurements are
affected by the mechanical properties of the substrate
underneath.29,30 To rule out such effects, indentation experi-
ments are better performed on the cross-sectional surface of
cleaved fibers. To this aim, we first embed MEH-PPV fibers in a
photocurable polymer, and freeze the resulting solid composite
in liquid nitrogen. Following careful fracturing, the fiber cross-
sectional surfaces are clearly visible both by emission confocal
microscopy and by AFM (Figure 2a,b). Examples of Young’s
modulus maps measured on the fiber cross sections are shown
in Figure 2c−e, where data clearly evidence the presence of a
stiffer internal region nearby the fiber longitudinal axis,
extending over about 30% of the cross sectional area. This
axial region exhibits a Young’s modulus up to 80−120 MPa,
larger than that in the surrounding sheath by about a factor 2.
This has to be clearly correlated to the internal nanostructure

and density, which we also investigate by SNOM in order to
probe simultaneously morphology and optical properties with
subwavelength resolution.31−34 Figure 3a displays the map of
the transmittance, T(x, y) = Is(x, y)/Isub, obtained by raster
scanning the sample, measuring the intensity of the transmitted

Figure 1. (a) Fluorescence confocal micrographs of MEH-PPV fibers.
Scale bar: 10 μm. Left inset scale bar: 2 μm. Right inset: photograph of
a uniaxially oriented nanofiber mat (scale bar, 4 mm). (b) MEH-PPV
fiber emission spectra vs sample temperature. Color scale: normalized
PL intensity.
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light, Is(x, y), and normalizing to the light transmitted by the
transparent regions of a quartz substrate (Isub). The measured T
values are superimposed to the simultaneously acquired fiber
topography and used to calculate the average absorption
coefficient along the local beam path. In Figure 3b, we display
the absorption coefficient, α/αmax, normalized to the maximum
absorption value measured in the single fiber (αmax in the range
3−3.5 × 104 cm−1). It is remarkable that the map showing the
spatial variation of the absorption coefficient is not flat, as
would be in case of homogeneous distribution of the absorbers.
Instead, comparison of the line profiles of the absorption
coefficient and the fiber height (Figure 3c) clearly indicates a
higher concentration of absorbing chromophores at the fiber
core. Such a nonuniform distribution of the absorbing
chromophores has been observed in all the investigated fibers
(see Supporting Information). Overall, both mechanical and
optical data evidence that the electrospun conjugated polymer
fibers are characterized by a core−sheath structure with a

denser and stiffer core, which can significantly impact on
technological and optoelectronic applications.
In order to rationalize the origin of such a complex internal

structure of the nanomaterial, we develop a model of the
polymer elongational dynamics during electrospinning, where
the flow of the solution jet exerts strong stretching forces.
Owing to inherent bonding defects, which substitute rigid
conjugated links by flexible tetrahedral links along the chain
backbone, the conjugated macromolecules can be described as
flexible chains35 with specific adjustments pertaining to their
high segmental aspect ratio.36 The conjugated polymer chain is
so treated as a linear, flexible, freely jointed chain, whose rigid
segments are chain sections between neighboring bonding
defects. Scaling is used to incorporate the interactions relevant
to the solvent type and to describe the entangled polymer
network conformation in the semidilute solution.35 An example
of a simulated polymer network at rest is shown in Figure 4a.
During electrospinning, each subchain (a chain section between
two neighboring entanglements) is acted upon by the
hydrodynamic force induced by the solvent, as well as by the
entropic forces applied by its neighboring subchains. The
resulting conformational evolution has been previously
modeled for fully flexible chains, using a beads-and-springs
lattice model and a 3D random walk simulation.35 This is
readily applicable to conjugated subchains, using as input the
calculated initial network mesh size (ξ0 = 20 nm) and number
of segments per subchain (Ns = 14), corresponding to the
polymer volume fraction (φ = 0.025), and assuming a defects
concentration of 10% of monomers, together with the jet
velocity. Since evaporation is negligible at the early stage of
electrospinning, the jet velocity can be derived (see details in
Methods) from the measured radius, a, of the jet (Figure 4b).
The simulation provides the dependence of the polymer
network radius, ap, on the longitudinal spatial coordinate, z
(Figure 4b). The polymer subchains contract laterally as a
consequence of the redistribution of probabilities between the
axial and radial directions of the random walk. The lateral
contraction of individual subchains affects the conformation of
the whole polymer network, narrowing its radius ap faster than
the narrowing of the jet radius a. The simulated conformation
of the whole network and its evolution along the jet (Figure
4b) demonstrate the dominant effect of axial stretching on
lateral contraction, while only a negligible effect of radial

Figure 2. (a) Confocal emission image of the cross-sectional surface of
an array of MEH-PPV fibers. Scale bar: 10 μm. (b) Tapping mode
topography micrograph of the cross-sectional surface of an individual
MEH-PPV nanofiber (bright region). The fiber is embedded in a UV-
cured polymer. Scale bar: 200 nm. (c−e) Examples of cross-sectional
Young’s modulus (normalized to the maximum value, Emax) maps
measured by AFM indentation measurements (force−distance curves).
The orange-red regions correspond to the cured polymer embedding
the fibers. Scalebars: (c) 500, (d) 200, and (e) 300 nm, respectively.

Figure 3. (a) Contour plot of the SNOM transmission superimposed to the corresponding topography. The topography map is produced by the
shear-force method during the scan of a single MEH-PPV fiber deposited on quartz, and the optical transmission is acquired simultaneously by
collecting the signal passing through the sample. Transmission is averaged over all polarization states of the near-field probing radiation. The color
scale refers to the contour plot. (b) Map of the nanoscale variation of optical absorption. (c) Line profile analysis showing the cross sections of the
topography (dashed line) and the corresponding relative optical absorption, α/αmax (continuous line) along the dashed segment in maps (a) and (b).
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hydrodynamic compression, evidenced in the almost uniform
radial mesh size. The network compacts around the jet center,
thereby increasing polymer concentration near the center.
Experimental evidence of this effect has been reported for
optically inert polymers such as poly(ethylene oxide) and
poly(methylmethacrylate), by measuring the polymer jet
absorption profile during electrospinning with fast X-ray
phase contrast imaging,37 whereas it was previously unexplored
in active, light-emitting or conductive nanofibers. In fact, our
model generalizes the stretching and compacting phenomen-
on35,37 for all types of linear polymers, using the degree of chain
flexibility as a tuning parameter. In the case of semiflexible
conjugated polymers whose backbone structure is rigid, the
bonding defects concentration determines chain flexibility (i.e.,
each rigid segment consists of several monomers), whereas fully
flexible polymer chains are a particular case of the model with
max defects concentration (i.e., each rigid segment consists of
one monomer). Consequently, the model and simulation
predict that the stretching phenomenon should be prominent
in conjugated polymers because of their longer rigid segments.
Hence, MEH-PPV is an excellent choice as a model system
allowing us to measure for the first time the nanostructure of
solid fibers by optical means, owing to its high absorption as
well as expectedly higher traces of the effects of electro-
spinning-induced stretching.
The network conformation during electrospinning depends

on the balance between stretching and evaporation.37

Dominant evaporation can cause rapid solidification of the jet
surface, retarding evaporation from the core, and resulting in a
tubular structure.28,38 On the other hand, dominant strain rates
will cause higher polymer density in the center due to
stretching. Our model shows that the stretching of conjugated
chains occurs earlier than in fully flexible chains, and one can
therefore expect a dense core in the solid fiber. Indeed, the
distance from the needle where full chain extension is
accomplished is below 1 mm for semiflexible conjugated
polymers, as demonstrated by overlaying the simulated polymer
network on the image of the actual jet (Figure 4b). Moreover,
the theoretical modeling of the network shows that the jet
radius reduction ratio at the position where full extension is
reached is lower by a factor of typically 2−5 (depending on the
solvent quality) compared to fully flexible chains, confirming an
earlier network stretching in conjugated polymers.

In addition, crystallization is enhanced in regions of strong
stretching and alignment. Interchain interaction and π−π
stacking are known to lead to high extent of local crystallinity.39

When neighboring chain sections are aligned in the same
direction, they correlate to each other according to Onsager’s
rods theory and may eventually crystallize. This phenomenon
will be more pronounced in conjugated polymers with longer
rigid chain sections between bonding defects. The model shows
that unlike flexible polymers conjugated chains intermix within
a single correlation volume in the network, increasing the
probability of interchain overlap. The model specifically
predicts that such correlation is likely to occur during
electrospinning of MEH-PPV with typical production-induced
bonding defects concentration (5−10% of monomers), at the
solution concentrations used in our experiments.
Here, the measurements of the material properties of as-spun

MEH-PPV solid nanofibers provide convincing evidence that
the polymer matrix conformation described for the liquid phase
of the jet is essentially retained in the solid nanofiber. In
particular, SNOM measurements (Figure 3) show higher
optical absorption at the fiber center and lower absorption
closer to its boundary, indicative of higher polymer
concentration at the fiber core. The regions of lower
concentration close to the boundary have a large fraction of
free volume and are most probably porous, possibly even
encouraging nucleation and growth of crystalline structures.40

Moreover, traces of an early solidification of a skin during the
spinning41 can be seen in the slight absorption rise very close to
the fiber boundary and on its surface (visible for instance in
Figure 3b). These observations suggest that during electro-
spinning the solvent content at the jet core is low as a result of
network stretching and inward contraction, whereas closer to
the jet boundary the solvent content is high and evaporation
through the solidified skin leaves voids and porosity in the
inner matrix close to the boundary. This is consistent with the
measured spatial variation of the Young’s modulus (Figure 2),
since lower values are measured far from the fiber axis, where a
less dense polymer network is present with higher free-volume
content. This process-induced core−sheath structure impacts
on many physical properties, determining, for instance, an
increase of the effective conjugation length in conjugated
polymer nanofibers.42

Conclusions. In summary, the elongational dynamics of
polymer semidilute solutions under electrostatic fields is

Figure 4. (a) Example of a section of a network at rest, made of 30 conjugated polymer chains, each consisting of 146 segments (MW = 380,000 g/
mol). The size of the network section is about 150 nm, and its average mesh size is 20 nm. (b) Image of the measured steady state jet profile and
corresponding jet radius a vs axial position z (continuous line). The modeled polymer network radius, ap vs z, is also shown (dashed line), together
with the network mesh (viewed mesh density is diluted ×300 in each direction). The maximal jet radius is larger than the needle internal radius, a0 =
96 μm, due to wetting of the needle face. Electric field = 1.8 kV/cm, flow rate = 10 μL/min, MEH-PPV volume fraction ϕ = 0.025.
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predicted to include a fast axial stretching of the polymer
network accompanied by a radial contraction toward the core,
resulting in a higher polymer concentration and axial
orientation at the fiber center. Our modeling shows that this
morphology should be more pronounced in the semiflexible
conjugated polymers due to their longer rigid chain segments,
but evidence from X-ray imaging of electrospinning jets
indicates that it is also expected in fully flexible polymers. As
demonstrated by the SNOM analysis and the AFM indentation
measurements, the polymer conformation during the electro-
spinning process is retained in the solid matrix. This process-
induced core−sheath structure impacts on many physical
properties, determining, for instance, an increase of the Young’s
modulus close to the fiber core. In perspective, the found
graded-density internal structure and the different mechanical
properties of the core and the sheath of polymer fibers open
interesting opportunities for many applications. In organic
semiconductors, the presence of a core with close-packed
molecules can improve charge transport, whereas the sheath
with less dense molecules can determine the suitable conditions
to enhance amplification of the light guided in the fiber. Both
charge transport and light amplification can be therefore
improved in a single nanostructure. For scaffold applications,
the complex internal structure can be exploited to engineering
multifunctional fibers, where the high density core can provide
enhanced mechanical strength and/or feed stimuli (electrical,
thermal, etc.), whereas the porous external layer can be a
suitable soft substrate for cell adhesion, contaminant removal,
or drug delivery.
Methods. Nanofiber Production. The nanofibers are

produced by electrospinning a solution of MEH-PPV (MW
380,000 g/mol, American Dye Source Inc., Baie-d’Urfe,́
Canada), dissolved in dimethyl sulfoxide and tetrahydrofuran
(1:4 w:w, see Supporting Information). A 70 μM polymer
solution is stored into a 1.0 mL plastic syringe tipped with a 27-
gauge stainless steel needle and injected at the end of the
needle at a constant rate of 10 μL/min by a microprocessor
dual drive syringe pump (33 Dual Syringe Pump, Harvard
Apparatus Inc., Holliston, MA). The positive lead from a high-
voltage supplier (XRM30P, Gamma High Voltage Research
Inc., Ormond Beach, FL) is connected to the metal needle
applying a bias of 5 kV. The collector is made of two Al stripes
biased at a negative voltage of −6 kV and positioned at a
mutual distance of 2 cm and at a distance of 6 cm from the
positively charged needle. All the electrospinning experiments
are performed at room temperature with air humidity in the
range 40−50%. Aligned arrays of free-standing fibers are
deposited across metallic stripes and then collected on a 1 × 1
cm2 quartz substrate. Arrays of uniaxially aligned MEH-PPV
nanofibers are also fabricated by using a rotating collector.
Polymer Jet Imaging. For imaging the polymer jet profile, a

stereomicroscope (Leica MZ 12.5) and a high speed camera
(Photron, FASTCAM APX RS, 1024 pixel ×1024 pixel, 10000
frame s−1) are used. A typical collected single frame image is
shown in Figure 4b. The dependence of the jet velocity, v, and
radius, a, on the axial coordinate z, is given by the following
relation35,37

≅ ≅ +
β−⎛

⎝⎜
⎞
⎠⎟

⎛
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⎞
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v
v
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z
z
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0 0

2

0

2
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Given the initial velocity v0 = 5.8 mm/s and radius a0 = 96 μm,
fit of the jet radius data yields z0 = 22 μm, and β = 0.94.

Nanofiber Characterization. Fluorescence confocal micros-
copy is performed by using a A1R MP confocal system
(Nikon), coupled to an inverted microscope (Eclipse Ti,
Nikon). The fibers are excited by an Ar+ ion laser (λexc = 488
nm) through an oil immersion objective with numerical
aperture of 1.4. PL spectra are collected by exciting the
MEH-PPV fibers with a diode laser (λexc = 405 nm) and
collecting the emission by an optical fiber coupled to a
monochromator, equipped with a Charge Coupled Device
detector (Yobin Yvon). The fiber samples are mounted in a He
closed-cycle cryostat under vacuum (10−4 mbar) for variable
temperature measurements.

AFM and Mechanical Compression Experiments. AFM
imaging is performed by using a Multimode system equipped
with a Nanoscope IIIa electronic controller (Veeco Instru-
ments). The nanofiber topography is measured in tapping
mode, utilizing Si cantilevers featuring a resonance frequency of
250 kHz. To map the local Young’s modulus of the nanofibers
(see Supporting Information for details), force−distance curves
are collected by using nonconductive, Au-coated silicon nitride
cantilevers with a nominal spring constant of 0.32 N/m, tip
radius of 20 nm, and resonant frequency of 52.5 kHz. The fiber
is supported underneath by the substrate, assuring no bending
or buckling during measurements, and the force is applied
perpendicularly to the fiber longitudinal axis and to the
substrate. The system is calibrated by measuring the force−
distance curve of a stiff sample (Si/SiO2, quartz). For mapping
the local mechanical properties on the fiber cross-sectional
surface, arrays of uniaxially aligned MEH-PPV fibers are
embedded in a photocurable polymer (NOA68, Norland
Products Inc.), that is cured by exposure to UV light for 3
min. The curing UV intensity is kept at about 1 mW/cm2 to
avoid degradation of the active polymer. The samples are
frozen in liquid nitrogen and fractured along a direction
perpendicular to the fiber alignment axis. Samples are then
inspected by confocal and AFM microscopies in order to select
those showing smooth cross-sectional surfaces for subsequent
mechanical measurements.

SNOM Analysis. Optical properties at nanoscale are
investigated with a scanning near-field optical microscope.
The instrument operates in the emission-mode: the sample
interacts with the near-field produced by a tapered optical fiber
probe (Nanonics) featuring a 50 nm diameter apical aperture
(nominal). The system allows the fiber topography (i.e., height
profile) to be measured simultaneously to optical transmission
in each scan, by the shear-force method. This allows a
topography map [h(x,y)] to be obtained, which is then used as
a local measurement of the fiber thickness. A semiconductor
laser with wavelength λ = 473 nm, coupled to the tapered fiber,
is used to measure the local absorption of the nanofibers. To
this aim, the signal transmitted by the sample is collected by an
aspheric lens and sent onto a miniaturized photomultiplier
(Hamamatsu R-5600), connected to a lock-in amplifier. In
order to avoid any artifact related to variations of the fiber
thickness, the absorption coefficient is calculated as α(x, y) =
−ln[T(x, y)]/h(x, y) = σρ(x, y), where h(x, y) indicates the
local nanofiber thickness, deducible from the topography map
measured simultaneously to the optical transmission map
(Figure 3a and Figure S2, see Supporting Information for more
details). Linear absorption is assumed as dominant and the
Lambert−Beer law is used to estimate absorption, in turn
related to the absorption cross section at the incident laser
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wavelength (σ) and to the local density of absorbing
chromophores, ρ(x, y).
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