
Enigma

Kiyoshi Akima
http://kiyoshiakima.tripod.com/funprogs

2006.04.27

Contents

1 Rotor-Based Cipher Machine 1

2 The Enigma 2
2.1 Machine Components . 2

2.1.1 Rotors . 2
2.1.2 Stepping Motion . 3
2.1.3 Reflector . 4
2.1.4 Plugboard . 4

2.2 Basic Operational Procedures . 4
2.2.1 Indicators . 5
2.2.2 Abbreviations and Guidelines 6

2.3 Variants . 7
2.4 Breaking the Enigma . 7

2.4.1 Security Properties . 8
2.4.2 Solution Before World War II 8
2.4.3 World War II . 9

3 The Emulator 10
3.1 Program Structure . 10
3.2 The start Function . 11

3.2.1 Initialization . 11
3.2.2 Termination . 11

4 Getting the Key 12
4.1 Prompting for Input . 12
4.2 Rotor Order . 13

4.2.1 Rotor Configuration . 13
4.2.2 Rotor Information . 14

4.3 Ring Settings . 15
4.4 Plugboard Connections . 16
4.5 Rotor Positions . 16
4.6 Reflector . 17

5 Enciphering/Deciphering Text 18
5.1 Rotor Positions . 18
5.2 Input . 18
5.3 Special Keys . 18

5.3.1 Clearing the Screen . 19
5.3.2 Changing the Rotor Positions 19
5.3.3 Exiting the Program . 19

5.4 Enciphering One Letter . 19
5.4.1 Rotor Step . 20
5.4.2 Plugboard . 21
5.4.3 Rotors . 21

5.4.4 Reflector . 21
5.4.5 Rotors . 22
5.4.6 Plugboard . 22
5.4.7 Output . 22

6 Handling the Terminal 23
6.1 Clear the Screen . 23
6.2 Clear to End-of-Line . 23
6.3 Move the Cursor . 23

7 Running the Emulator 24
7.1 Basic Operation . 24
7.2 An Example . 25

7.2.1 Entering the Key . 25
7.2.2 Deciphering the Message 26
7.2.3 Doing it With Four Rotors 26

A Literate Programs 27

B Index of Code Fragments 28

C Index of Identifiers 29

April 27, 2006 enigmab.nw 1

1 Rotor-Based Cipher Machine

World War I brought a new dimension to cryptography and cryptanalysis. The
traditional paper-and-pencil cryptographic systems, the classical cipher systems
and simple code systems, had become targets of opportunity for Allied crypt-
analysts. Even the ADFGVX Cipher, then believed by its users to offer the
ultimate in security, by war’s end offered only token resistance to the shillful
efforts of French, British, and American cryptanalysts. By the time the war
ended in 1918, Allied code and cipher experts ahd become confident that they
could handle almost any type of system they might encounter.

After the war, however, there began a new era for cryptographic ideas. In-
ventors began thinking about new encryption methods. The U.S. Patent Office
began processing patent applications for anew cipher devices and machines.
The most important invention was a new electro-mechanical enciphering and
deciphering machine. With this invention emerged the concept of the electrical
rotor or “transfer wheel,” which until the late 1960s has held a prominent and
important, if not guarded, place in the cryptographic community. (Incidentally,
it is not certain where or when the word “rotor” first came into usage; and it is
curious, too, that the word is a palindrome.)

Rotor machines appear to have been independently, and almost simultane-
ously, invented in four different countries, in the U.S. by E. H. Hebern, in Sweden
by A. Damm, in Holland by H. Koch, and in Germany by A. Scheribius. Koch
later worked with Scheribius in Berlin where together they produced the now
infamous Enigma ciper machine of World War II.

A rotor is simply a flattened drum made of an insulating material. On each
of the rotor’s two faces, 26 electrical contacts protrude. Intermally, the contacts
from one face are connected randomly to those on the other face. In the typical
rotor machine, a number of rotors, usually three to five, are placed side-by-side,
so that electrically the rotors have contact with each other. When a key is
pressed on a keyboard, an electrical current leaves the key, passes through each
of the rotors, in turn, and finally exits, causing a bulb (lamp) to light, or, by
means of some form of printing mechanism, to print a letter. Before the next
letter is enciphered, ”stepping gears” usually cause one or more of the rotors
(which contain teeth on their peripheries) to rotate or step. Cryptographic
security in a rotor-type cipher machine is thus due to the maze of electrical
connections between the keyboard and the indicating device, which changes as
letters are enchiphered. While previous machines often used 26 different enci-
phering alphabets in some pseudorandom manner, the new rotor-type machines
were capable of producing as many as 26n different enciphering alphabets with n
rotors.

So important was the concept of the rotor that during World War II most of
the major powers used machines incorporating it. For example, Germany had
the Enigma, Britain the Typex, and U.S. the SIGABA (M-134).

April 27, 2006 enigmab.nw 2

2 The Enigma

Like other rotor machines, the Enigma machine is a combination of mechanical
and electrical systems. The mechanical mechanism consists of a keyboard; a
set of rotating disks called rotors arranged adjacently along a spindle; and a
stepping mechanism to turn one or more of the rotors with each key press. The
exact mechanism varies, but the most common form is for the right-hand rotor
to step once with every keystroke, and occasionally the motion of neighboring
rotors is triggered. The continual movement of the rotors results in a different
cryptographic transformation after each key press.

2.1 Machine Components

The mechanical parts act in such a way as to form a varying electrical circuit—
the actual encipherment of a letter is performed electrically. When a key is
pressed, the circuit is completed; current flows through the various components
and ultimately lights one of many lamps, indicating the output letter. For
example, when encrypting a message starting ANX..., the operator would first
press the A key, and the Z lamp might light; Z would be the first letter of the
ciphertext. The operator would then proceed to encipher N in the same fashion,
and so on.

2.1.1 Rotors

The rotors (alternatively, wheels or drums—Walzen in German) form the heart
of the Enigma machine. Approximately four inches in diameter, each rotor is a
disk made of hard rubber or bakelite with a series of brass spring-loaded pins
on one face arranged in a circle; on the other side are a corresponding number
of circular electrical contacts. The pins and contacts represent the alphabet—
typically the 26 letters A-Z (this will be assumed for the rest of the document).
When placed side by side, the pins of one rotor rest against the contacts of
the neighboring rotor, forming an electrical connection. Inside the body of the
rotor, a set of 26 wires connects each pin on one side to a contact on the other
in a complex pattern. The wiring differs for every rotor.

By itself, a rotor performs only a very simple type of encryption—a simple
substitution cipher. For example, the pin corresponding to the letter E might
be wired to the contact for letter T on the opposite face. The complexity comes
from the use of several rotors in series—usually three or four—and the regular
movement of the rotors; this provides a much stronger type of encryption.

When placed in the machine, a rotor can be set to one of 26 positions. It
can be turned by hand using a grooved finger-wheel which protrudes from the
internal cover when closed. So that the operator knows the position, each rotor
has a alphabet ring attached around the outside of the disk, with 26 letters or
numbers; one of these can be seen through a window, indicating the position of
the rotor to the operator. The position of the ring is known as the Ringstellung
(“ring settings”). In the military versions, the ring contains a notch used to
control the stepping of the rotors.

April 27, 2006 enigmab.nw 3

The Army and Air Force Enigmas came equipped with several rotors; when
first issued there were a total of three. In 1938 this changed to five, from which
three were chosen for insertion in the machine. These were marked with Roman
numerals to distinguish them: I, II, III, IV, and V, all with single notches. The
Navy version had always been issued with more rotors than the other services:
at first, five, then seven and finally eight. The additional rotors were named
VI, VII, and VIII, all with different wiring, and had two notches cut into them,
resulting in a more frequent turnover.

The four-rotor Navy Enigma (M4) accommodated an extra rotor in the same
space as the three-rotor version. This was accomplished by replacing the original
reflector with a thinner reflector and adding a special fourth rotor. The fourth
rotor can be one of two types: Beta or Gamma. This fourth rotor never steps,
but can be manually placed in any of the 26 positions.

2.1.2 Stepping Motion

To avoid merely implementing a simple substitution cipher, some rotors turn
with consecutive presses of a key. This ensures that the cryptographic trans-
formation is different at each position, producing a formidable polyalphabetic
substitution cipher.

The most common arrangement utilizes a ratchet and pawl mechanism. Each
rotor is affixed with a ratched with 26 teeth; a group of pawls engage engage
the teeth of the ratchet. The pawls are pushed forward in unison with each
keypress on the machine. If a pawl engages the teeth of a ratchet, that rotor
advances by one step.

In the Wehrmacht Enigma, each rotor is affixed with an adjustable notched
ring. At a certain point, a rotor’s notch will align with the pawl, allowing it
to engage the ratchet of the next rotor with the subsequent keypress. When a
pawl is not aligned with the notch, it will simply slide over the surface of the
ring without engaging the ratchet. In a single-notch rotor system, the second
rotor is advanced one position every 26 advances of the first rotor. Similarly, the
third rotor is advanced one position for every 26 advances of the second rotor.
The second rotor also advances at the same time as the third rotor, meaning
the second rotor can step twice on subsequent key presses—“double-stepping”—
resulting in a reduced period.

A double step occurs as follows: the first rotor steps, and takes the second
rotor one step further. If the second rotor has moved by this step into its own
notch position, the third pawl can drop down. On the next step this pawl pushes
the ratchet of the third rotor and advances it, but will also push into the second
rotor’s notch, advancing the second rotor a second time in row.

With three wheels and one notch on each wheel, the machine has a period
of 26 × 25 × 26 = 16 900. Historically, messages were limited to a couple of
hundred letters, and so there was no risk of repeating any position within a
single message.

When pressing a key, the rotors step before the electrical circuit is connected.

April 27, 2006 enigmab.nw 4

2.1.3 Reflector

The last rotor is followed by a reflector (Umkehrwalze in German), a patented
feature distinctive of the Enigma family among the various rotor machines de-
signed in the period. The reflector connects outputs of the last rotor in pairs,
redirecting current back through the rotors by a different route. The reflector
ensures that Enigma is self-reciprocal: conveniently, encryption is the same as
decryption. However, the reflector also gives Enigma the property that no let-
ter can encrypt to itself. This was a severe conceptual flaw and a cryptological
mistake subsequently exploited by codebreakers.

In most models of the Enigma, the reflector is fixed and does not rotate.

2.1.4 Plugboard

The plugboard (Steckerbrett in German) is a variable wiring that could be
reconfigured by the operator. It was introduced on German Army versions
in 1930 and was soon adopted by the Navy as well. The plugboard contributes
a great deal to the strength of the machine’s encryption, more than an extra
rotor would. Enigma without a plugboard—“unsteckered” Enigma—can be
solved relatively straightforwardly using hand methods; these techniques are
generally defeated by the addition of a plugboard, and codebreakers resorted to
special machines to solve it.

A cable placed onto the plugboard connects letters in pairs, for example, E
and Q might be a steckered pair. The effect is to swap those letters before and
after the main rotor scrambling unit. For example, when an operator presses
E, the signal is diverted to Q before entering the rotors. Several such steckered
pairs, up to 13, might be used at one time.

Current flows from the keyboard through the plugboard, and proceeds to
the entry stator or Eintrittswalze. Each letter on the plugboard has two jacks.
Inserting a plug will disconnect the upper jack (from the keyboard) adn the
lower jack (to the entry stator) of that letter. The plug at the other end of the
crosswired cable is inserted into another letter’s jacks, switching the connections
of the two letters.

2.2 Basic Operational Procedures

In German military usage, communications were divided up into a number of
different networks, all using different settings for their Enigma machines. These
communications nets were termed keys at Bletchley Park and were assigned
codenames such as Red, Chaffinch, and Shark. Each unit operating on a network
was assigned a settings list specifying the Enigma for a period of time. For a
message to be correctly encrypted and decrypted, both sender and receiver
have to set up their Enigmas in the same way; the rotor selection and order,
the starting position plugboard connections need to be identical; these settings
have to be agreed on beforehand and were distributed in codebooks.

April 27, 2006 enigmab.nw 5

An Enigma machine’s initial state, the cryptographic key, has several as-
pects:

• Wheel order (Walzenlage)—the choice of rotors and the order in which
they are used.

• Initial position of the rotors—chosen by the operator, different for
each message.

• Ring settings (Ringstellung)—the position of the alphabet ring rela-
tive to the rotor wiring.

• Plug settings (Steckerverbindungen)—the connections of the plugs
in the plugboard.

Enigma was designed to be secure even if the rotor wiring was known to an
eavesdropper, although in practice the wiring was kept secret. With secret
wiring, the total number of possible configurations has been calculated to be
around 10114 (approximately 380 bits); with known wiring and other operational
constraints, this is reduced to around 1023 (76 bits). Users of Enigma were
assured of its security by the large number of possibilities; it was not feasible for
an adversary to even begin to try every possible combination in a brute force
attack.

2.2.1 Indicators

Most of the key were kept constant for a set time period, typically a day. How-
ever, a diffrent initial rotor position was chosen for each message, because if a
number of messages are sent encrypted with identical or near identical settings,
a cryptanalyst has several messages “in depth,” and might be able to attack the
messages using frequency analysis. To counter this, a different starting position
for the rotors was chosen for each message; a concept similar to an initializa-
tion vector in modern cryptography. The starting position was transmitted
along with the ciphertext. The exact method used is termed the “indicator
procedure”—weak indicator procedures allowed the initial breaks into Enigma.

One of the earliest indicator procedures was exploited to make the initial
break into the Enigma by Polish cryptanalysts. The procedure was for the op-
erator to set up his machine in accordance with his settings list, which included
a global initial position for the rotors (Grundstellung—“ground setting”), AOH,
say. The operator would turn his rotors until AOH was visible through the rotor
windows. At this point, the operator would choose his own, arbitrary starting
position for that particular message. An operator might select EIN, and this
became the message settings for that encryption session. The operator would
type EIN into the machine, twice, to allow for detecting transmission errors.
The results would be an encrypted indicator—the EIN typed twice might turn
into XHTLOA, which would be transmitted along with the message. Finally, the
operator would then spin the rotors to his message settings, EIN in this example,
and the text of the actual message was typed in.

April 27, 2006 enigmab.nw 6

At the receiving end the operation was reversed. The operator set the ma-
chine to the initial settings and typed in the first six letters of the message
(XHTLOA). In this example EINEIN would be produced. By moving his rotors
to EIN, the receiving operator would then type in the rest of the ciphertext,
deciphering the message.

The weakness came from two factors: the use of a global ground setting—this
was later changed so that the operator selected his initial position to encrypt the
indicator, and sent the initial position in the clear. The second problem was the
repetition of the indicator, which was actually a security flaw. The message key
was encoded twice, resulting in a relation between first and fourth, second and
fifth, and third and sixth characters. This security problem enabled the Polish
Cipher Bureau to break the pre-war Enigma messages. However, from 1939 on,
the Germans changed the procedure to increase the security, transmitting the
encrypted indicator only once.

During the Second World War, German operators used the codebooks only
to set up the rotors and ring settings and to make the plugboard connections.
For each message, he selected a random start position, let’s say WZA, and random
message key, let’s say SXT. He moved the rotors in the WZA start position, and
encoded the message key SXT. Let us assume that the result was UHL. He sets
up the message key SXL as start position, and encode the message. Next, he
transmits the start position WZA, the encoded message key UHL together with the
message. The receiver sets up the start position according to the first trigram,
WZA, and decodes the second trigram, UHL, to obtain the SXT message key. Next,
he uses this SXT message key as start position to decode the message. This way,
each ground setting was different and the new procedure avoided the security
flaw of double encoded message keys.

This procedure was used by Army and Air Force only. The Navy procedures
on sending messages with the Enigma were far more complex and elaborate.

2.2.2 Abbreviations and Guidelines

The Army Enigma machine only used the 26 alphabet characters. Signs were
replaced by rare character combinations. A space was omitted or replaced by
an X. The X was generally used as point or full stop. Some signs were different
in other parts of the armed forces. The Army replaced a comma by ZZ and
the question mark by FRAGE or FRAQ. The Navy however, replaced the comma
by Y and the question mark by UD. The combination CH, as in Acht (eight) or
Richtung (direction) was replaced by Q (AQT, RIQTUNG). Two, three, or four zeros
were replaced by CENTA, MILLE, and MYRIA.

The Army and Air Force transmitted the messages in groups of five charac-
ters. The Navy, using the four rotor Enigma, applied four letter groups. Fre-
quently used names or words were to be varied as much as possible. Words like
Minensuchboot (minesweeper) could be written as MINENSUCHBOOT, MINBOOT,
MMMBOOT, or MMM354. To make cryptanalysis harder, more than 250 characters
in one message were forbidden. Longer messages were divided in several parts,
each using its own message key.

April 27, 2006 enigmab.nw 7

2.3 Variants

Far from being a single design, there are numerous models and variants of the
Enigma family. The earliest Enigma machines were commercial models dating
from the early 1920s. Starting in the mid-20s, the various branches of the
German military began to use Enigma, making a number of changes in order to
increase its security. In addition, a number of other nations either adopted or
adapted the Enigma design for their own cipher machines.

The Enigma model A was exhibited at the Congress of the International
Postal Union in 1924 and 1924. The machine was heavy and bulky, incorporating
a typewriter. A model B was introduced, and was of a similar construction.
While bearing the Enigma name, both models A and B were quite unlike later
versions; they differed in physical size and shape, but also cryptographically, in
that they lacked the reflector.

The reflector was first introduced in the Enigma C (1926) model. The re-
flector is a key feature of all subsequent Enigma machines.

The German Army introduced their own version of the Enigma in 1928.
The major difference from the commercial Enigma models was the addition of a
plugboard to swap pairs of letters, greatly increasing the cryptographic strength
of the machine. Other differences included the use of a fixed reflector, and the
relocation of the stepping notches from the rotor body to the movable alphabet
rings.

A four rotor Enigma was introduced by the Navy for U-boat traffic in 1942.
The extra rotor was fitted in the same space by splitting the reflector into a
combination of a thin reflector and a thin fourth rotor. This thin rotor did
not rotate with the other rotors, but it could be set in any of 26 positions. In
one of these positions, the four-rotor Enigma enciphered exactly the same way
as the three-rotor Enigma (wow, déjà vu, emulating a three-rotor machine on
something else).

2.4 Breaking the Enigma

Enigma was designed to defeat basic cryptanalysis techniques by continually
changing the substitution alphabet. Like other rotor machines, it implemented
a polyalphabetic substitution cipher with a long period. With single-notched
rotors, the period of the machine was 16, 900 (26 × 25 × 26). This long period
helped protect against overlapping alphabets.

The Enigma machines added other possibilities. The sequence of alphabets
used was different if the rotors were started in position ABC, as opposed to
ACB; each rotor had a rotatable ring which could be set in different positions,
and the starting position of each rotor was also variable. Most of the military
Enigmas also featured a plugboard (German: Steckerbrett) which exchanged
letters. Even so, this complex combination key could be easily communicated
to another user, comprising as it did only a few simple items: rotors to be used
and their order, ring positions, starting positions, and plugboard connections.
Potentially this made the Enigma an excellent system.

April 27, 2006 enigmab.nw 8

2.4.1 Security Properties

The various Enigma models provided different levels of security. The presence
of a plugboard substantially increased the complexity of the machine. In gen-
eral, unsteckered Enigma could be attacked using hand methods, while breaking
versions with a plugboard was more involved, and often required the use of ma-
chines.

The Enigma machine had a number of properties that proved helpful to
cryptanalysts. First, a letter could never be encrypted to itself (with the ex-
ception of the early models which lacked a reflector). This was of great help in
finding cribs—short sections of plaintext that are known (or suspected) to be
somewhere in a ciphertext. This property can be used to help deduce where the
crib occurs. For a possible location, if any letter in the crib matches a letter in
the ciphertext at the same position, the location can be ruled out; at Bletchley
Park, this was termed a “crash.”

Another property of the Enigma was that it was self-reciprocal: encryption
is performed identically to decryption. This imposed constraints on the type of
scrambling that Enigma could provide at each position, and this property was
used in a number of codebreaking methods.

A weakness of many Enigma models was that the rightmost rotor turned a
constant number of places before the next rotor turned.

Apart from the less-than-ideal inherent characteristics of the machine, the
way Enigma was used proved its greatest weakness in practice. Mistakes by
operators were common, and a number of the officially-specified procedures for
using Enigma provided avenues for attack. It has been suggested by some of
those working on its cryptanalysis at Bletchley Park that the Enigma would
have been unbreakable in practice had its operators not been so error-prone,
and had its operating procedures been better thought out.

2.4.2 Solution Before World War II

In December 1932, a 27-year-old Polish mathematician, Marian Rejewski, who
had joined the Polish Cipher Bureau in September that year, made one of the
most important breakthroughs in cryptologic history by using algebraic math-
ematical techniques to solve the Enigma wiring.

At the time, the indicator procedure was to encrypt an operator-selected
message setting twice, with the machine at its “ground setting,” and to place the
twice-encrypted message setting at the opening of the message. For instance,
if an operator picked QRS as his ‘message setting,’ he would set the machine
to the day’s ground settings, and then type QRSQRS. This might be encrypted
as JXDRFT. The feature of Enigma that Rejewski exploited was that the disk
moved three positions between the two sets of QRS—knowing that J and R were
originally the same letter, as were XF and DT, was vital information. Although
the original letters were unknown, it was known that, while there were a huge
number of rotor settings, there were only a small number of rotor wirings that
would change a letter from J to R, X to F and D to T, and so on. Rejewski called
these patterns chains.

April 27, 2006 enigmab.nw 9

However, in 1939 the German Army increased the complexity of its Enigma
operating procedures. Initially only three rotors had been in use, and their
sequence in the slots was changed periodically. Now two additional rotors were
introduced; three of the five would be in use at any given time. The Germans
also stopped transmitting a twice-enciphered individual three-letter message
setting at the beginning of a message, thus putting an end to one of the Poles’
original methods of cryptological attack.

2.4.3 World War II

British codebreakers at Bletchley Park had adopted the Polish Enigma-breaking
techniques, but had to remain alert to German cryptographic advances. The
German Army had changed its practices (more rotors, a more secure indicator
system, etc.). The German Navy—some of whose Enigma ciphers the Poles had
broken—had always used more secure procedures.

German Army and Air Force Enigma-machine operators also gave the de-
crypters immense help on a number of occasions. In one instance an operator
was asked to send a test message, and simply hit the T key repeatedly and sent
the resulting letters. A British analyst received from the intercept stations a
long message without a single T in it, and immediately realized what had hap-
pened. In other cases, Enigma operators would constantly use the same settings
as message keys, often their own initials or those of girlfriends (called “cillies,”
after an operator with the apparent initials “C.I.L.”). Analysts were set to
finding these messages in the sea of intercepts every day, allowing Bletchley
Park to use the original Polish techniques to find the initial settings for the day.
Other German operators used “form letters” for daily reports, notably weather
reports, in which case the same crib might be used every day.

Later in the war, British codebreakers learned to fully exploit a crucial se-
curity flaw associated with German weather reports: they were broadcast from
weatherships to Germany in lower-level ciphers, easy to decrypt, then retrans-
mitted to U-boats at sea in Enigma, thus giving Bletchley Park regular cribs.
This was crucial in attacking the special four-rotor U-boat Enigma machine
introduced in 1942.

Cipher material was captured at sea. The first capture of Enigma material
occurred in February 1940, when rotors VI and VII, the wiring of which was at
that time unknown, were captured from the crew of U-33. On May 7, 1941, the
Royal Navy captured a German weather ship, together with cipher equipment
and codes. They did it again shortly afterwards. And two days later U-boat U-
110 was captured, complete with Enigma machine, codebook, operating manual
and other information.

And then there was the bombe, a precursor of the modern computer. Space
precludes a discussion of this electro-mechanical marvel: Books have been writ-
ten on the subject so I won’t go into it here.

April 27, 2006 enigmab.nw 10

3 The Emulator

Real Enigma machines are rare and thus command premium prices. But we can
emulate one on a computer. For many cryptographic systems, emulating one
can be better than having the real thing:

• Availability. Many devices are not available, due either to low produc-
tion numbers or government restrictions.

• Cost. Except for the initial cost of the computer, which in most likelihood
was purchased for other purposes, no additional expenses are necessary,
whereas purchase of individual cryptographic devices (assuming that one
could even find them for sale) would continually add up. Prices for com-
puters are going down, while the cost for cryptographic devices, if they
can be found, are already high, and climbing.

• Ease of Operation. Entering or changing keys in a program is relatively
simple when compared to some cryptographic devices. Though some de-
vices can be simulated by using sliding strips, their use often requires
careful attention to the relative motion of the alphabets (sliding strips),
thus introducing a large margin of error.

• Ease of Modification. When using a computer, simple program changes
often may be done in minutes, whereas changes in complex wiring or
gearing systems might take days and even weeks to accomplish. Thus,
using a computer allows the “inventor” to see immediately the results
arising from modifications. In addition, new or radically revised systems
can often be designed in a very short time, and the resulting cryptographic
security can be tested quickly. Without a computer, how long would it
take to rewire a rotor? Or to implement an Enigma with five rotors instead
of three or four?

3.1 Program Structure

This BCPL program has a very simple structure. It GETs the library header,
defines some static variables and a terminal handling module (Section 6), and
defines the function start.

10 〈* 10〉≡
// Enigma

GET "libhdr"

STATIC {

〈static variables 12c〉
}

〈terminal handling module 23a〉

〈function start 11a〉

April 27, 2006 enigmab.nw 11

3.2 The start Function

As usual, execution begins with a call to start. For the emulator, execution
naturally falls into four main phases:

• Initialize the program.

• Get the key settings from the user.

• Encipher/decipher text using the key.

• Clean up.

11a 〈function start 11a〉≡ (10)

LET start() = VALOF {

〈subroutines in start 12b〉
〈variables in start 16b〉

〈initialize the program 11b〉
〈get key settings 12a〉
〈encipher text 18a〉
〈clean up 11c〉

RESULTIS 0

}

3.2.1 Initialization

11b 〈initialize the program 11b〉≡ (11a)

rdch()

3.2.2 Termination

When the program is finished, it clears the screen.
11c 〈clean up 11c〉≡ (11a) 13a .

TermClearScreen()

April 27, 2006 enigmab.nw 12

4 Getting the Key

Before the Enigma can be used, it must be set up with the desired encoding
key. The key consists of:

• Rotor order (Walzenlage)

• Ring settings (Ringstellung)

• Plugboard connections (Steckerverbindungen)

• Starting rotor positions

The program clears the screen before and after the key entry phase.
12a 〈get key settings 12a〉≡ (11a)

TermClearScreen()

TermMoveCursor(10, 0)

〈get key components 12d〉
TermClearScreen()

4.1 Prompting for Input

12b 〈subroutines in start 12b〉≡ (11a) 13f .

LET Prompt(prompt) = VALOF {

LET c, i = ?, 1

sawritef("%s: ", prompt)

{

c := rdch()

SWITCHON c INTO {

CASE 9:

IF 1 < i i := i = 1

ENDCASE

CASE ’*n’:

BREAK

DEFAULT:

inbuff!i, i := c, i + 1

ENDCASE

}

} REPEAT

RESULTIS i - 1

}

This routine uses an input buffer. . .
12c 〈static variables 12c〉≡ (10) 13b .

inbuff

. . . which needs to be allocated before use. . .
12d 〈get key components 12d〉≡ (12a) 13c .

inbuff := getvec(30)

April 27, 2006 enigmab.nw 13

. . . and deallocated. The program doesn’t deallocate it immediately after the
key entry phase since it will be needed again to reposition the rotors.

13a 〈clean up 11c〉+≡ (11a) / 11c 14d .

freevec(inbuff)

4.2 Rotor Order

The first component of the key is the rotor order (Walzenlage). Historically
the rotors were identified by Roman numerals (and Greek letters for the fourth
“thin” rotors). This program uses the Arabic digits 1-8 for the Roman numer-
als I-VIII and the lowercase Roman letters b and g for the Greek letters B and
Γ. They were usually specified from left to right, and this program adheres to
that tradition.

4.2.1 Rotor Configuration

The program emulates the four-rotor Enigma if the user specifies four rotors,
otherwise it emulates the three-rotor Enigma.

13b 〈static variables 12c〉+≡ (10) / 12c 13d .

fourth = 0

13c 〈get key components 12d〉+≡ (12a) / 12d 13e .

IF 4 = Prompt("Rotor Order") fourth := 1

The program stores the rotor configurations in a vector.
13d 〈static variables 12c〉+≡ (10) / 13b 15e .

rotors

13e 〈get key components 12d〉+≡ (12a) / 13c 15d .

rotors := getvec(3 + fourth)

FOR i = 1 TO 3 rotors!i := ConfigRotor(inbuff!(i+fourth))

IF fourth rotors!4 := ConfigRotor(inbuff!1)

13f 〈subroutines in start 12b〉+≡ (11a) / 12b 14e .

LET ConfigRotor(r) = VALOF {

LET v = getvec(3)

〈configure rotor 13g〉
RESULTIS v

}

Rotor configuration consists of three components:

• The rotor forward translation table.

• The rotor reverse translation table.

• The notch position(s).

The rotor information is packaged in a pair of functions.
13g 〈configure rotor 13g〉≡ (13f) 14a .

LET w, n = RotorWiring(r), RotorNotches(r)

April 27, 2006 enigmab.nw 14

The forward translation table is used to map the current flowing through the
rotor from right to left.

14a 〈configure rotor 13g〉+≡ (13f) / 13g 14b .

v!1 := getvec(26)

FOR i = 1 TO 26 v!1!i := w%i - ’A’

The reverse translation table is used to map the current flowing through the
rotor from left to right.

14b 〈configure rotor 13g〉+≡ (13f) / 14a 14c .

v!2 := getvec(26)

FOR i = 1 TO 26 v!2!(w%i - ’A’ + 1) := i - 1

The notch position(s) affect the motion of the rotors.
14c 〈configure rotor 13g〉+≡ (13f) / 14b

v!3, v!3!1 := getvec(3), n%0

FOR i = 1 TO n%0 v!3!(i+1) := n%i - ’A’

All of the memory allocated for the rotors need to be deallocated at program
termination.

14d 〈clean up 11c〉+≡ (11a) / 13a 15f .

FOR i = 1 TO 3 + fourth {

freevec(rotors!i!1)

freevec(rotors!i!2)

freevec(rotors!i!3)

freevec(rotors!i)

}

freevec(rotors)

4.2.2 Rotor Information

These two functions store the information about the rotors. First the internal
wirings.

14e 〈subroutines in start 12b〉+≡ (11a) / 13f 15c .

AND RotorWiring(r) = VALOF {

SWITCHON r INTO {

〈rotor wirings 14f〉
}

RESULTIS ""

}

Here are the wirings of the five standard rotors used by all branches of the
Wehrmacht.

14f 〈rotor wirings 14f〉≡ (14e) 15a .

DEFAULT: RESULTIS "EKMFLGDQVZNTOWYHXUSPAIBRCJ"

CASE ’2’: RESULTIS "AJDKSIRUXBLHWTMCQGZNPYFVOE"

CASE ’3’: RESULTIS "BDFHJLCPRTXVZNYEIWGAKMUSQO"

CASE ’4’: RESULTIS "ESOVPZJAYQUIRHXLNFTGKDCMWB"

CASE ’5’: RESULTIS "VZBRGITYUPSDNHLXAWMJQOFECK"

April 27, 2006 enigmab.nw 15

Here are the wirings of the three additional rotors used by the Kriegsmarine.
15a 〈rotor wirings 14f〉+≡ (14e) / 14f 15b .

CASE ’6’: RESULTIS "JPGVOUMFYQBENHZRDKASXLICTW"

CASE ’7’: RESULTIS "NZJHGRCXMYSWBOUFAIVLPEKQDT"

CASE ’8’: RESULTIS "FKQHTLXOCBJSPDZRAMEWNIUYGV"

And finally here are the wirings of the two “thin” rotors used by the Kriegsma-
rine.

15b 〈rotor wirings 14f〉+≡ (14e) / 15a

CASE ’b’: RESULTIS "LEYJVCNIXWPBQMDRTAKZGFUHOS"

CASE ’g’: RESULTIS "FSOKANUERHMBTIYCWLQPZXVGJD"

The rotor notches are provided the same way.
15c 〈subroutines in start 12b〉+≡ (11a) / 14e 20c .

AND RotorNotches(r) = VALOF {

SWITCHON r INTO {

DEFAULT: RESULTIS "Q"

CASE ’2’: RESULTIS "E"

CASE ’3’: RESULTIS "V"

CASE ’4’: RESULTIS "J"

CASE ’5’: RESULTIS "Z"

CASE ’6’:

CASE ’7’:

CASE ’8’: RESULTIS "MZ"

CASE ’b’:

CASE ’g’: RESULTIS ""

}

RESULTIS ""

}

4.3 Ring Settings

The second component is the ring settings (Ringstellung).
15d 〈get key components 12d〉+≡ (12a) / 13e 16a .

Prompt("Ring Settings")

ring := getvec(4)

IF fourth ring!4 := inbuff!1 - ’a’

FOR i = 1 TO 3 ring!i := inbuff!(i + fourth) - ’a’

The program stores the ring settings in a vector. . .
15e 〈static variables 12c〉+≡ (10) / 13d 16c .

ring

. . . which needs to be deallocated at clean up.
15f 〈clean up 11c〉+≡ (11a) / 14d 16e .

freevec(ring)

April 27, 2006 enigmab.nw 16

4.4 Plugboard Connections

The third component is the plugboard connections (Steckerverbindungen).
16a 〈get key components 12d〉+≡ (12a) / 15d 16d .

n := Prompt("Plugboard Connections")

16b 〈variables in start 16b〉≡ (11a) 18d .

LET n = ?

The program stores the plugboard connections as a vector of integers.
16c 〈static variables 12c〉+≡ (10) / 15e 16j .

plugs

This vector needs to be allocated. . .
16d 〈get key components 12d〉+≡ (12a) / 16a 16f .

plugs := getvec(26)

. . . and deallocated at clean up.
16e 〈clean up 11c〉+≡ (11a) / 15f 16k .

freevec(plugs)

First the plugboard is initialized to represent the state with no connections.
16f 〈get key components 12d〉+≡ (12a) / 16d 16g .

FOR i = 1 TO 26 plugs!i := i - 1

Then, if at least one connection is specififed, pairs of letters are connected to
each other.

16g 〈get key components 12d〉+≡ (12a) / 16f 16h .

UNLESS n < 2 n := n - n MOD 2

FOR i = 1 TO n BY 2 {

LET c1, c2 = inbuff!i - ’a’, inbuff!(i+1) - ’a’

plugs!(c1+1), plugs!(c2+1) := c2, c1

}

4.5 Rotor Positions

The final component of the key is the starting positions of the rotors.
16h 〈get key components 12d〉+≡ (12a) / 16g 17b .

posn := getvec(4)

〈get rotor positions 16i〉
16i 〈get rotor positions 16i〉≡ (16h 19b)

Prompt("Rotor Positions")

IF fourth posn!4 := inbuff!1 - ’a’

FOR i = 1 TO 3 posn!i := inbuff!(i + fourth) - ’a’

Like the ring settings, the current positions are stored in a vector. . .
16j 〈static variables 12c〉+≡ (10) / 16c 17a .

posn

. . . which needs to be deallocated at clean up.
16k 〈clean up 11c〉+≡ (11a) / 16e 17c .

freevec(posn)

April 27, 2006 enigmab.nw 17

4.6 Reflector

Strictly speaking, the reflector is not part of the key settings. However, the
three- and four-rotor Enigmas had different reflectors, and the program must
take this into account. With the appropriate “thin” rotor in the correct position,
a four-rotor Enigma could be made compatible with the three-rotor machine.

The program stores the reflector mapping in a vector. . .
17a 〈static variables 12c〉+≡ (10) / 16j 19e .

reflector

. . . which must be allocated. . .
17b 〈get key components 12d〉+≡ (12a) / 16h 17d .

reflector := getvec(26)

. . . and deallocated.
17c 〈clean up 11c〉+≡ (11a) / 16k 20b .

freevec(reflector)

Now the program must determine the reflector in use. For both the three- and
four-rotor emulations, the program uses the B variant of the reflector.

17d 〈get key components 12d〉+≡ (12a) / 17b 17e .

TEST fourth n := "ENKQAUYWJICOPBLMDXZVFTHRGS"

ELSE n := "YRUHQSLDPXNGOKMIEBFZCWVJAT"

Then the mappings are converted to integers.
17e 〈get key components 12d〉+≡ (12a) / 17d 20a .

FOR i = 1 TO 26 reflector!i := n%i - ’A’

April 27, 2006 enigmab.nw 18

5 Enciphering/Deciphering Text

Now we get to the heart of the program, the enciphering/deciphering loop. This
is an infinite loop, broken when the user presses X to terminate the program.

18a 〈encipher text 18a〉≡ (11a)

{

〈show rotor positions 18b〉
〈get keystroke 18c〉
〈process special keys 19a〉
IF ’a’ <= ch <= ’z’ {

〈encipher one letter 19d〉
}

} REPEAT

5.1 Rotor Positions

On a real Enigma machine, the current rotor positions were visible through
windows on the top of the machine. This program emulates that by displaying
the rotor positions on the top row of the screen.

18b 〈show rotor positions 18b〉≡ (18a)

TermMoveCursor(0, 27)

sawrch(’[’)

IF fourth sawrch(’A’ + posn!4)

FOR i = 1 TO 3 sawrch(’A’ + posn!i)

sawrch(’]’)

5.2 Input

Reading input is a simple matter of homing the cursor and getting one keystroke.
18c 〈get keystroke 18c〉≡ (18a)

TermMoveCursor(0, 0)

ch := sardch()

18d 〈variables in start 16b〉+≡ (11a) / 16b

LET ch = ?

5.3 Special Keys

Some keys have special meaning to the program. Note that these are all upper-
case letters.

Key Meaning

C Clear the screen

R Change rotor positions

X Exit the program

April 27, 2006 enigmab.nw 19

5.3.1 Clearing the Screen

The C key clears the plain- and ciphertext strings from the screen. The strings
also have to be cleared from memory.

19a 〈process special keys 19a〉≡ (18a) 19b .

IF ’C’ = ch {

TermMoveCursor(2, 0); TermClearEoL()

TermMoveCursor(3, 0); TermClearEoL()

FOR i = 1 TO 61 ptext%i, ctext%i := ’ ’, ’ ’

LOOP

}

5.3.2 Changing the Rotor Positions

The R key allows the user to change the rotor positions. The process is
identical to that used for the initial entry of the positions.

19b 〈process special keys 19a〉+≡ (18a) / 19a 19c .

IF ’R’ = ch {

TermMoveCursor(10, 0)

〈get rotor positions 16i〉
TermMoveCursor(10, 0); TermClearEoL()

LOOP

}

5.3.3 Exiting the Program

The X key exits the program.
19c 〈process special keys 19a〉+≡ (18a) / 19b

IF ’X’ = ch BREAK

5.4 Enciphering One Letter

If the user entered a lowercase letter, we get to the meat of the program; the
encipherment/decipherment. First the program adds the letter to the end of
the plaintext string and the string is displayed.

19d 〈encipher one letter 19d〉≡ (18a) 20d .

AppendLetter(ptext, ch)

TermMoveCursor(2, 0)

sawritef("%s", ptext)

The plaintext string, as well as the ciphertext string used for output must be
declared.

19e 〈static variables 12c〉+≡ (10) / 17a

ptext; ctext

April 27, 2006 enigmab.nw 20

And initialized.
20a 〈get key components 12d〉+≡ (12a) / 17e

ptext, ptext%0 := getvec(16), 60

ctext, ctext%0 := getvec(16), 60

FOR i = 1 TO 61 ptext%i, ctext%i := ’ ’, ’ ’

And deallocated at clean up.
20b 〈clean up 11c〉+≡ (11a) / 17c

freevec(ptext)

freevec(ctext)

The program displays up to 60 letters in each of the plain- and ciphertext strings.
The first letter is dropped from the head of the string and the string shifted to
the left before the new letter is added to the tail.

20c 〈subroutines in start 12b〉+≡ (11a) / 15c 21a .

LET AppendLetter(s, l) BE {

FOR i = 1 TO 59 s%i := s%(i+1)

s%60 := l

}

Next the program converts the letter to an integer.
20d 〈encipher one letter 19d〉+≡ (18a) / 19d 20e .

ch := ch - ’a’

5.4.1 Rotor Step

Before any actual encipherment takes place, the rotors step. This alters the
substitution so that a letter is not enciphered the same way twice in succession.

The fourth rotor on the four-rotor machine never steps to it can be ignored
for the duration of this discussion.

20e 〈encipher one letter 19d〉+≡ (18a) / 20d 21b .

TEST AtNotch(2) 〈step left rotor 20f〉
ELSE 〈step middle rotor? 20g〉
〈step right rotor 20h〉

If the middle rotor was already at its notch position(s), both the left and middle
rotors step (the “double-step”).

20f 〈step left rotor 20f〉≡ (20e)

posn!1, posn!2 := (posn!1 + 1) MOD 26, (posn!2 + 1) MOD 26

Otherwise, if the right rotor was at its notch position, the middle rotor steps.
20g 〈step middle rotor? 20g〉≡ (20e)

IF AtNotch(3) posn!2 := (posn!2 + 1) MOD 26

The right rotor steps on every keystroke.
20h 〈step right rotor 20h〉≡ (20e)

posn!3 := (posn!3 + 1) MOD 26

April 27, 2006 enigmab.nw 21

This function determines whether a rotor is at its notch position(s).
21a 〈subroutines in start 12b〉+≡ (11a) / 20c 21f .

LET AtNotch(r) = VALOF {

FOR i = 1 TO rotors!r!3!1 IF posn!r = rotors!r!3!(i+1) RESULTIS 1

RESULTIS 0

}

5.4.2 Plugboard

Now for the encipherment itself. First the letter is passed through the plugboard.
21b 〈encipher one letter 19d〉+≡ (18a) / 20e 21d .

〈plugboard translation 21c〉
The plugboard translation is a simple table look-up. One has to be added to
the index to account for the BCPL vectors beginning with 1.

21c 〈plugboard translation 21c〉≡ (21b 22c)

ch := plugs!(ch+1)

5.4.3 Rotors

Then through the standard three rotors, from right to left.
21d 〈encipher one letter 19d〉+≡ (18a) / 21b 21e .

FOR i = 3 TO 1 BY -1 ch := Translate(i, 1, ch)

And through the fourth rotor, if present, also from right to left.
21e 〈encipher one letter 19d〉+≡ (18a) / 21d 21g .

IF fourth ch := Translate(4, 1, ch)

This function translates a letter through a rotor. With the reverse mapping
generated earlier, this function can handle both the forward and reverse trans-
lations. The only difference is the translation table used (or rather, the index
of the translation table).

21f 〈subroutines in start 12b〉+≡ (11a) / 21a

LET Translate(r, tt, c) = VALOF {

LET o = (ring!r - posn!r + 26) MOD 26

c := (c - o + 26) MOD 26

c := rotors!r!tt!(c+1)

c := (c + o) MOD 26

RESULTIS c

}

5.4.4 Reflector

Then through the reflector. This is also a simple table look-up, just like the
plugboard.

21g 〈encipher one letter 19d〉+≡ (18a) / 21e 22a .

ch := reflector!(ch+1)

April 27, 2006 enigmab.nw 22

5.4.5 Rotors

Then back through the fourth rotor, if present, from left to right this time.
22a 〈encipher one letter 19d〉+≡ (18a) / 21g 22b .

IF fourth ch := Translate(4, 2, ch)

And back through the standard three rotors, from left to right.
22b 〈encipher one letter 19d〉+≡ (18a) / 22a 22c .

FOR i = 1 TO 3 ch := Translate(i, 2, ch)

5.4.6 Plugboard

Finally the letter is passed through the plugboard again.
22c 〈encipher one letter 19d〉+≡ (18a) / 22b 22d .

〈plugboard translation 21c〉

5.4.7 Output

An a real Enigma machine the output is indicated by a glowing lamp. This
program does it by adding the letter to the end of the ciphertext string displayed
just below the plaintext string.

22d 〈encipher one letter 19d〉+≡ (18a) / 22c

AppendLetter(ctext, ch + ’A’)

TermMoveCursor(3, 0)

sawritef("%s", ctext)

April 27, 2006 enigmab.nw 23

6 Handling the Terminal

Due to its interactive nature, this program needs the ability to control the
terminal, or at least some aspects of it, namely the ability to position output.
A more ambitious program might handle the terminal by determining its type
and figuring out how to do various operations appropriately, perhaps by reading
/etc/termcap and delving into its depths. An even more ambitious program
might port the Curses library. This program is not that ambitious. Instead, it
has a small set of core functionality for ANSI terminals. They work for such
things as VT-100s, console windows under Windows, and xterms.

6.1 Clear the Screen

This procedure clears the screen and homes the cursor. (Actually, the procedure
homes the cursor and clears to the end of the display.)

23a 〈terminal handling module 23a〉≡ (10) 23b .

LET TermClearScreen() BE

sawritef("*e[1;1H*e[2J")

6.2 Clear to End-of-Line

This procedure clears the screen from the current cursor position to the end of
the line.

23b 〈terminal handling module 23a〉+≡ (10) / 23a 23c .

LET TermClearEoL() BE

sawritef("*e[K")

6.3 Move the Cursor

This procedure moves the cursor to the specified row and column. Rows and
columns both start with 0 at the upper-left corner.

23c 〈terminal handling module 23a〉+≡ (10) / 23b

LET TermMoveCursor(row, col) BE

sawritef("*e[%i1;%i1H", row + 1, col + 1)

April 27, 2006 enigmab.nw 24

7 Running the Emulator

You’ve seen the program. Now it’s time to run it.

7.1 Basic Operation

The program is completely interactive, requiring no arguments on the command
line.

The program first clears the screen and then prompts for the rotor order
(Walzenlage). Historically the standard rotors were identified by Roman nu-
merals and the “thin” rotors by Greek letters; this program expects three Ara-
bic digits in the range 1-8 and the lowercase Roman letters b and g. No range
checks are performed: an invalid specifier will result in rotor I being used. The
program also does not ensure that the thin rotors are used only in the leftmost
position, nor that only the thin rotors are used in the leftmost position. Nor
does the program check to see whether a rotor was requested more than once;
real Enigmas were issued with one of each rotor but this program will allow the
same rotor to be used more than once. The rotors were traditionally specifed
left to right, and this program does not break with that tradition.

The program emulates the four-rotor Enigma if four rotors are specified
and emulates the three-rotor Enigma if only three rotors are specified. (Kinda
obvious, isn’t it?)

The second prompt is for the ring settings (Ringstellung). Depending on the
markings on the rings, this was specified either by numbers in the range 1-26 or
by letters. On a real Enigma they each were set by lifting a lever and turning
the ring. This program expects three or four lowercase letters.

The third prompt is for the plugboard connections (Steckerverbindungen).
This was specified as zero or more (commonly ten) pairs of letters. On a real
machine the connections were made by inserting double-ended banana plugs
into lettered sockets. This program expects a string of lowercase letters without
any spacing or punctuation. In the real world one letter cannot be plugged to
two others; this program does not check.

The fourth prompt is for the initial position of the rotors. On a real machine
they were set by turning thumbwheels on the top of the box. This program
expects a string of three or four lowercase letters, like the ring settings

Then the screen is cleared, the current rotor positions are displayed as they
are on a real Enigma, and the program is ready to begin enciphering/deciphering
text.

Pressing any of the letter keys (with CAPS LOCK off) results in that letter
being enciphered. As each letter is enciphered, the display is updated to show
the new rotor positions, the entered plaintext, and the resulting ciphertext.

Pressing C key will erase the plain- and ciphertext strings from the screen.
Pressing R key will prompt for new rotor positions.
Pressing X key will terminate the program.

April 27, 2006 enigmab.nw 25

7.2 An Example

Now it’s time to work through an example. This is taken from the book Enigma
by Robert Harris and the subsequent movie starring Dougray Scott and Kate
Winslet. (Need I say that the book is better than the movie?)
The keys for March 1943 are given in part as:
27 III II. V.. LZC DV LF NQ GE OS FK EW MR IT HK
28 IV. V.. III XRV SY EK NZ OR CG JM QU PV BI LW
29 V.. II. IV. TPK JT NW DU EO KV BY FS HQ IM LX

An intercepted message is given as:
STNX
B28/03/43 1930 5886 SF282 A236
OKH DE ADU (1830) 174= QAP CWU=
UFJZS NKIRA CGTPF UONXD GQMPU QXUGF OWEZS TCBJD
JLFME AZQRM NZZYI CGSSR YOFQX ADSPU QIMXM MELYR
XKXYI MDEEW ISKDP RSTFR TCOKB GGQTQ KPKMP NCCGH
YUVJO TIVMA IVIGK WQKWJ FOYMR VFBVY RKEZF SYCBY
QQSOQ CIZUU SUTB

Obviously, we’re dealing here with the three-rotor variant.

7.2.1 Entering the Key

Upon starting up, the first thing the program asks for is the rotor order. Looking
in the row corresponding to the message date and translating from Roman
numerals, this is determined to be 453. Press 4 5 3 followed by ENTER
to accept the setting.

The next thing the program asks for are the ring settings. In the key, this
is given immediately following the rotor order. In this case these are XRV. Press
X R V followed by ENTER .

The next thing the program asks for are the plugboard connections. These
are the letter pairs in the key. Enter the string SYEKNZORCGJMQUPVBILW followed
by ENTER .

Now the program asks for the rotor positions. The first trio of letters enclosed
between the equals signs (=), sent in the clear, gives the rotor positions used to
encode the message key. For this message, this is QAP. Press Q A P followed

by ENTER .
When the screen clears and then displays the current rotor positions ([QAP]),

we can decipher the message key, the second trio of letters enclosed between the
equals signs. Press C W U . You do not need to press ENTER here.
Instead, take note of the three letters at the top of the display, the [MPY]. This
is the message key—the starting rotor positions used to encrypt this particular
message.

April 27, 2006 enigmab.nw 26

I’m going to assume you can remember these three letters, at least long
enough to enter them in the next step. Press R now and the program prompts
for the new rotor positions. Enter the message key, followed by ENTER .

Even though the text will scroll across the screen, it might be helpful to
clear the screen before deciphering the message itself. Do this by pressing C .

7.2.2 Deciphering the Message

Now we can start deciphering the message proper. Begin entering the ciphertext,
beginning with the first five-letter group UFJZS.

After the first three five-letter groups, you should see the text An OKH.
Dringend. [To Army High Command. Urgent.] (Recall from the Operational
Procedures that X was generally used as a full stop.)

Type in the remainder of the ciphertext, reading the plaintext off the bottom
row of the display.

If you can read German, you should be able to understand the entire message.
Even if you can’t read German, you should be able to puzzle out that the
message is referring to something west of Smolensk. Remember that you can
clear the screen at any time by pressing the C key.

When you’re finished, press X to terminate the program.

7.2.3 Doing it With Four Rotors

The four-rotor Enigma was capable of emulating the three-rotor Enigma. This
was necessary to allow U-boats to communicate with other units which did not
have the four-rotor machine. This was done by using the B “thin” rotor with
ring setting A and position A.

To decipher the above message in four-rotor mode, specify rotor order B453,
ring settings AXRV, the same plugboard connections, and starting rotor positions
AQAP. After obtaining the message key MPY, set the rotor positions to AMPY and
proceed to decipher the message.

April 27, 2006 enigmab.nw 27

A Literate Programs

This document not only describes the implementation of the Enigma Emulator,
it is the implementation. The noweb system for “literate programming” gener-
ates both the document and the code from a single source. This source consists
of interleaved prose and labelled code fragments. The fragments are written in
the order that best suits describing the program, namely the order you see in
this document, not the order dictated by the BCPL/ programming language.
The program noweave accepts the source and produces the document’s type-
script, which includes all of the code and all of the text. The program notangle
extracts all of the code, in the proper order for compilation.

Fragments contain source code and references to other fragments. Fragment
definitions are preceded by their labels in angle brackets. For example, the code

27a 〈a fragment label 27a〉≡ 27c .

sum := 0

FOR i = 1 TO 10 DO 〈increment sum 27b〉
27b 〈increment sum 27b〉≡ (27a)

sum := sum + x!i

sums the elements of x. Several fragments may have the same name; notangle
concatenates their definitions to produce a single fragment. noweave identifies
this concatenation by using + ≡ instead of ≡ in continued definitions:

27c 〈a fragment label 27a〉+≡ / 27a

sawritef("%i*n", sum)

Fragment definitions are like macro definitions; notangle extracts a program
by expanding one fragment. If its definition refers to other fragments, they
themselves are expanded, and so on.

Fragment definitions include aids to help readers navigate among them. Each
fragment name ends with the number of the page on which the fragment’s
definition begins and a letter giving its sequence within that page. If there is
only one fragment on a page then there is no letter. This is also shown in the
left margin. Each continued definition also shows the previous definition, and
the next continued definition, if there is one. / 7b is an example of a previous
definition that appears on page 7, and 11 . says the definition is continued on
page 11. These annotations form a double linked list of definitions; the left
arrow points to the previous definition in the list and the right arrow points to
the next one. The previous link on the first definition is omitted, and the next
link on the last definition is omitted. These lists are complete: If some of a
fragment’s definition appears on the same page with each other, the links refer
to the page on which they appear.

Fragments also show a list of pages on which the fragment is used, as illus-
trated by the (27a) to the right of the definition for 〈increment sum〉, above.

April 27, 2006 enigmab.nw 28

B Index of Code Fragments

Underlined entries are to the definition of the Code Fragment. In many cases,
the definition of a fragment can be continued from one piece to another.

〈* 10〉 10
〈a fragment label 27a〉 27a, 27c
〈clean up 11c〉 11a, 11c, 13a, 14d, 15f, 16e, 16k, 17c, 20b
〈configure rotor 13g〉 13f, 13g, 14a, 14b, 14c
〈encipher one letter 19d〉 18a, 19d, 20d, 20e, 21b, 21d, 21e, 21g, 22a, 22b, 22c,

22d
〈encipher text 18a〉 11a, 18a
〈function start 11a〉 10, 11a
〈get key components 12d〉 12a, 12d, 13c, 13e, 15d, 16a, 16d, 16f, 16g, 16h, 17b,

17d, 17e, 20a
〈get key settings 12a〉 11a, 12a
〈get keystroke 18c〉 18a, 18c
〈get rotor positions 16i〉 16h, 16i, 19b
〈increment sum 27b〉 27a, 27b
〈initialize the program 11b〉 11a, 11b
〈plugboard translation 21c〉 21b, 21c, 22c
〈process special keys 19a〉 18a, 19a, 19b, 19c
〈rotor wirings 14f〉 14e, 14f, 15a, 15b
〈show rotor positions 18b〉 18a, 18b
〈static variables 12c〉 10, 12c, 13b, 13d, 15e, 16c, 16j, 17a, 19e
〈step left rotor 20f〉 20e, 20f
〈step middle rotor? 20g〉 20e, 20g
〈step right rotor 20h〉 20e, 20h
〈subroutines in start 12b〉 11a, 12b, 13f, 14e, 15c, 20c, 21a, 21f
〈terminal handling module 23a〉 10, 23a, 23b, 23c
〈variables in start 16b〉 11a, 16b, 18d

April 27, 2006 enigmab.nw 29

C Index of Identifiers

Underlined entries are their definitions. Standard library definitions are not
listed here. Nor are FOR control variables and most other variables local to a
procedure.

AppendLetter: 19d, 20c, 22d
AtNotch: 20e, 20g, 21a
ch: 18a, 18c, 18d, 19a, 19b, 19c, 19d, 20d, 21c, 21d, 21e, 21g, 22a, 22b, 22d
ConfigRotor: 13e, 13f
ctext: 19a, 19e, 20a, 20b, 22d
fourth: 13b, 13c, 13e, 14d, 15d, 16i, 17d, 18b, 21e, 22a
inbuff: 12b, 12c, 12d, 13a, 13e, 15d, 16g, 16i
plugs: 16c, 16d, 16e, 16f, 16g, 21c
posn: 16h, 16i, 16j, 16k, 18b, 20f, 20g, 20h, 21a, 21f
Prompt: 12b, 13c, 15d, 16a, 16i
ptext: 19a, 19d, 19e, 20a, 20b
reflector: 17a, 17b, 17c, 17e, 21g
ring: 15d, 15e, 15f, 21f
RotorNotches: 13g, 15c
rotors: 13d, 13e, 14d, 21a, 21f
RotorWiring: 13g, 14e
start: 11a
TermClearEoL: 19a, 19b, 23b
TermClearScreen: 11c, 12a, 23a
TermMoveCursor: 12a, 18b, 18c, 19a, 19b, 19d, 22d, 23c
Translate: 21d, 21e, 21f, 22a, 22b

